A128730 Number of UDL's in all skew Dyck paths of semilength n.
0, 0, 1, 4, 16, 68, 301, 1366, 6301, 29400, 138355, 655424, 3121438, 14930540, 71675839, 345148892, 1666432816, 8064278288, 39103576699, 189949958332, 924163714216, 4502711570988, 21966152501239, 107284324830302
Offset: 0
Keywords
Examples
a(3) = 4 because we have UDUUDL, UUUDLD, UUDUDL and UUUDLL (the other six skew Dyck paths of semilength 3 are the five Dyck paths and UUUDDL).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
Programs
-
Maple
G:=2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..26);
-
Mathematica
CoefficientList[Series[2*x^2/(1-6*x+5*x^2+(1+x)*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
PARI
z='z+O('z^50); concat([0,0], Vec(2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)))) \\ G. C. Greubel, Mar 19 2017
Formula
a(n) = Sum_{k>=0} k*A128728(n,k).
G.f.: 2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)).
a(n) ~ 5^(n-1/2)/(6*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence: +2*(n-1)*(3*n-8)*a(n) +(-39*n^2+161*n-148)*a(n-1) +(48*n^2-215*n+220)*a(n-2) -5*(3*n-5)*(n-3)*a(n-3)=0. - R. J. Mathar, Jun 17 2016
For n >= 2, a(n) = Sum_{k=1..n-1} binomial(n,k)*A014300(k). - Jianing Song, Apr 20 2019
Comments