A128889 a(n) = (2^(n^2) - 1)/(2^n - 1).
1, 5, 73, 4369, 1082401, 1090785345, 4432676798593, 72340172838076673, 4731607904558235517441, 1239150146850664126585242625, 1298708349570020393652962442872833, 5445847423328601499764522166702896582657, 91355004067076339167413824240109498970069278721
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..50
Programs
-
Maple
a:=n->(2^(n^2)-1)/(2^n-1): seq(a(n),n=1..13);
-
Mathematica
f[n_] := (2^(n^2) - 1)/(2^n - 1); Array[f, 12] F[n_] := Plus @@ Table[2^((n - i)*n), {i, 1, n}] (* Enrique Pérez Herrero, Feb 23 2009 *) Table[(2^(n^2) - 1)/(2^n - 1), {n, 1, 20}] (* Vincenzo Librandi, Feb 18 2014 *)
-
PARI
a(n)=(2^n^2-1)/(2^n-1) \\ Charles R Greathouse IV, Feb 17 2014
Formula
a(n) = Sum_{k=1..n} 2^((n-k)*n). - Enrique Pérez Herrero, Feb 23 2009
Extensions
More terms from Robert G. Wilson v and Emeric Deutsch, Apr 22 2007
Comments