cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A252491 a(n) = (10^(n^2) - 1)/(10^n - 1).

Original entry on oeis.org

1, 101, 1001001, 1000100010001, 100001000010000100001, 1000001000001000001000001000001, 1000000100000010000001000000100000010000001, 100000001000000010000000100000001000000010000000100000001, 1000000001000000001000000001000000001000000001000000001000000001
Offset: 1

Views

Author

M. F. Hasler, Jan 08 2015

Keywords

Comments

When written in base 10, the terms consist of n digits '1' separated by strings of n-1 digits '0'.
This sequence is relevant for counterexamples to a conjecture in A086766: If p is prime and a(p) is not prime, then A086766(10^(p-1)) = 0.
a(n) is the product of A019328(d) for all d that divide n^2 but not n. - Robert Israel, Jan 08 2015
If a(n) is a prime then n is a prime. What is the smallest prime term greater than 101 in this sequence? - Farideh Firoozbakht, Jan 08 2015
According to what precedes, a(n) is prime iff A019328(d) is prime, where d is the only divisor of n^2 which is not a divisor of n, i.e., iff n is a prime and n^2 is in A138940. No such term is known, except for n=2. - M. F. Hasler, Jan 09 2015

Crossrefs

Cf. A128889 (for 2 instead of 10).

Programs

  • Maple
    seq((10^(n^2)-1)/(10^n-1), n=1..20); # Robert Israel, Jan 08 2015
  • PARI
    A252491(n)=(10^(n^2)-1)\(10^n-1)

A119408 Decimal equivalent of the binary string generated by the n X n identity matrix.

Original entry on oeis.org

1, 9, 273, 33825, 17043521, 34630287489, 282578800148737, 9241421688590303745, 1210107565283851686118401, 634134936313486520338360567809, 1329552593586084350528447794605199361, 11151733894906779683522195341810241573494785
Offset: 1

Views

Author

Lynn R. Purser, Jul 25 2006

Keywords

Comments

a(n) is divisible by 2^n - 1. a(n) == n mod 2^(n+1) - 1. - Robert Israel, Jun 09 2015

Examples

			n=2: [1 0; 0 1] == 1001_2 = 9;
n=3: [1 0 0; 0 1 0; 0 0 1] == 100010001_2 = 273;
n=4: [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] == 1000010000100001_2 = 33825.
		

Crossrefs

Cf. A128889.

Programs

  • MATLAB
    for n = 1:10 bi2de((reshape(eye(n),length(eye(n))^2,1))') end
    % Kyle Stern, Dec 14 2011
    
  • Mathematica
    For[n=2,n<=10,Print[n," ",Sum[2^((n+1)(k-1)), {k,1,n}]];n++ ]
    Table[FromDigits[Flatten[IdentityMatrix[n]],2],{n,15}] (* Harvey P. Dale, Dec 31 2021 *)
  • PARI
    a(n)=(2^n*2^(n^2)-1)/(2*2^n-1) \\ Charles R Greathouse IV, Jun 09 2015

Formula

a(n) = 2^((n+1)(n-1)) + 2^((n+1)(n-2)) + ... + 1 where n=2,3,...
a(n) = (2^n*2^(n^2)-1)/(2*2^n-1). - Stuart Bruff, Jun 08 2015

A275779 a(n) = (2^(n^2) - 1)/(1 - 1/2^n).

Original entry on oeis.org

2, 20, 584, 69904, 34636832, 69810262080, 567382630219904, 18519084246547628288, 2422583247133816584929792, 1268889750375080065623288448000, 2659754699919401766201267083003561984, 22306191045953951743035482794815064402563072
Offset: 1

Views

Author

Olivier Gérard, Aug 08 2016

Keywords

Comments

Sum of the geometric progression of ratio 2^n.
Number of all partial binary matrices with rows of length n: A partial binary matrix has 1<=k<=n rows of length n. The number of different partial matrices with k rows is 2^(k*n). a(n) is the sum for k between 1 and n.

Crossrefs

Cf. A128889 (accepting the null matrix and excluding the full n*n matrices)

Programs

  • Mathematica
    Table[(2^(n^2) - 1)/(1 - 1/2^n), {n, 1, 10}]
  • PARI
    a(n) = {(2^(n^2) - 1)/(1 - 1/2^n)} \\ Andrew Howroyd, Apr 26 2020

Formula

a(n) = Sum_{k=1..n} 2^(k*n).

Extensions

Terms a(11) and beyond from Andrew Howroyd, Apr 26 2020

A356274 a(n) is the number whose base-(n+1) expansion equals the binary expansion of n.

Original entry on oeis.org

1, 3, 5, 25, 37, 56, 73, 729, 1001, 1342, 1741, 2366, 2941, 3615, 4369, 83521, 104977, 130340, 160021, 194922, 234741, 280393, 332377, 406250, 474553, 551151, 636637, 732511, 837901, 954304, 1082401, 39135393, 45435425, 52521910, 60466213, 69345326, 79236613
Offset: 1

Views

Author

Thomas Scheuerle, Aug 02 2022

Keywords

Comments

If the binary expansion of n is n = bit0*2^0 + bit1*2^1 + bit2*2^2 + ... then a(n) = bit0*(n+1)^0 + bit1*(n+1)^1 + bit2*(n+1)^2 + ... . In other words: Interpret the binary expansion of n as digits in base n+1.

Examples

			n=4 in binary is 100 and interpreting those digits as base n+1 = 5 is a(4) = 25.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := FromDigits[IntegerDigits[n, 2], n + 1]; Array[a, 40] (* Amiram Eldar, Aug 19 2022 *)
  • PARI
    a(n) = fromdigits(digits(n, 2), n+1)
    
  • Python
    def a(n): return sum((n+1)**i*int(bi) for i, bi in enumerate(bin(n)[2:][::-1]))
    print([a(n) for n in range(1, 39)]) # Michael S. Branicky, Aug 02 2022

Formula

a(2^n) = (2^n + 1)^n = A136516(n).
a(2^n - 1) = (2^(n^2) - 1)/(2^n - 1) = A128889(n).
a(2^n + 1) = 1 + (2^n + 2)^n.
a(n) = A104257(n+1, n).
a(n) = (1/n)*Sum_{j>=1} floor((n + 2^(j-1))/2^j) * ((n-1)*(n+1)^(j-1) + 1).
a(n) = (1/n)*Sum_{j=1..n} ((n-1)*(n+1)^A007814(j) + 1).
a(2*n) = A104258(2*n+1) - 1.
(2*m+1)^n divides a((2*m+1)^n-1) for positive m and n > 0.
Showing 1-4 of 4 results.