cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128896 Triangular numbers that are products of three distinct primes.

Original entry on oeis.org

66, 78, 105, 190, 231, 406, 435, 465, 561, 595, 741, 861, 903, 946, 1378, 1653, 2211, 2278, 2485, 3081, 3655, 3741, 4371, 4465, 5151, 5253, 5995, 6441, 7021, 7503, 8515, 8911, 9453, 9591, 10011, 10153, 10585, 11026, 12561, 13366, 14878, 15051, 15753
Offset: 1

Views

Author

Zak Seidov, Apr 20 2007

Keywords

Examples

			a(1)=T(11)=66=2*3*11, a(2)=T(12)=78=2*3*13, a(3)=T(14)=105=3*5*7, a(4)=T(19)=190=2*5*19, a(5)=T(21)=231=3*7*11, a(6)=T(28)=406=2*7*29.
T(15) = 120 = 2^3*3*5. The triangular 120 has three prime factors but is not a product of these factors. Thus, 120 is not in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n(n+1)/2,{n,1,210}],Transpose[FactorInteger[ # ]][[2]]=={1,1,1}&]
    Select[Accumulate[Range[200]],PrimeNu[#]==PrimeOmega[#]==3&] (* Harvey P. Dale, Apr 23 2017 *)

Formula

a(n) = T(k) = k*(k+1)/2 = p*q*r for some k,p,q,r, where T(k) is triangular number and p, q, r are distinct primes.
Equals A000217 INTERSECT A007304 and A075875 INTERSECT A121478. - R. J. Mathar, Apr 22 2007

Extensions

Name clarified by Tanya Khovanova, Sep 06 2022