A075875 Triangular numbers that are 3-almost primes.
28, 45, 66, 78, 105, 153, 171, 190, 231, 325, 406, 435, 465, 561, 595, 741, 861, 903, 946, 1378, 1653, 2211, 2278, 2485, 3081, 3655, 3741, 4371, 4465, 4753, 5151, 5253, 5995, 6441, 7021, 7381, 7503, 8515, 8911, 9453, 9591, 10011, 10153, 10585, 11026
Offset: 1
Examples
a(1)=28, 28 is a triangular number and 28 = 2*2*7, i.e., is a product of 3 prime factors so is 3-almost prime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Programs
-
Mathematica
Select[Accumulate[Range[200]],PrimeOmega[#]==3&] (* Harvey P. Dale, Jul 24 2012 *)
-
PARI
issemi(n)=bigomega(n)==2 ok(m,n)=if(isprime(m), issemi(n), isprime(n) && issemi(m)) list(lim)=my(v=List()); lim\=1; for(n=7,(sqrt(8*lim+1)-1)\2, if(if(n%2, ok(n,(n+1)/2), ok(n/2,n+1)), listput(v, n*(n+1)/2))); Vec(v) \\ Charles R Greathouse IV, Jun 12 2017
Formula
q:= n-> is(numtheory[bigomega](n)=3):
select(q, [i*(i+1)/2$i=0..200])[]; # Alois P. Heinz, Mar 27 2024
Comments