cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128918 a(n) = n*(n+1)/2 if n is odd, otherwise (n-1)*n/2 + 1.

Original entry on oeis.org

1, 1, 2, 6, 7, 15, 16, 28, 29, 45, 46, 66, 67, 91, 92, 120, 121, 153, 154, 190, 191, 231, 232, 276, 277, 325, 326, 378, 379, 435, 436, 496, 497, 561, 562, 630, 631, 703, 704, 780, 781, 861, 862, 946, 947, 1035, 1036, 1128, 1129, 1225, 1226, 1326, 1327, 1431, 1432, 1540
Offset: 0

Views

Author

N. J. A. Sloane, Sep 26 2007

Keywords

Crossrefs

Programs

  • Haskell
    a128918 n = (n + m - 1) * n' + m * n - m + 1  where (n', m) = divMod n 2
    -- Reinhard Zumkeller, Oct 12 2013
    
  • Maple
    A128918:=n->`if`((n mod 2) = 1, n*(n+1)/2, (n-1)*n/2+1): seq(A128918(n), n=0..100); # Wesley Ivan Hurt, Feb 03 2017
  • Mathematica
    Table[If[OddQ[n],(n(n+1))/2,(n(n-1))/2+1],{n,0,60}] (* or *)
    LinearRecurrence[{1,2,-2,-1,1},{1,1,2,6,7},60] (* Harvey P. Dale, Mar 31 2012 *)
    CoefficientList[ Series[(-4x^3 + x^2 -1)/((x -1)^3 (x + 1)^2), {x, 0, 55}], x] (* Robert G. Wilson v, Jan 20 2018 *)
  • PARI
    a(n)=if(n%2,n*(n+1),(n-1)*n+2)/2 \\ Charles R Greathouse IV, Oct 16 2015
    
  • PARI
    Vec((1 - x^2 + 4*x^3) / ((1 - x)^3*(1 + x)^2) + O(x^40)) \\ Colin Barker, Jan 20 2018
    
  • Python
    def A128918(n): return n*(n-1)//2 + 1 + (n-1)*(n%2) # Chai Wah Wu, May 24 2022

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), with a(0)=1, a(1)=1, a(2)=2, a(3)=6, a(4)=7. - Harvey P. Dale, Mar 31 2012
a(n) = (1/2)*(-1)^n*(n+(-1)^n*((n-2)*n+2)-2). - Harvey P. Dale, Mar 31 2012
a(2*n) = A130883(n); a(2*n+1) = A000384(n+1). - Reinhard Zumkeller, Oct 12 2013
G.f.: (1 - x^2 + 4*x^3) / ((1 - x)^3*(1 + x)^2). - Colin Barker, Jan 20 2018