cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A131215 Numbers which are both 11-gonal and centered 11-gonal.

Original entry on oeis.org

1, 606, 241396, 96075211, 38237692791, 15218505655816, 6056927013322186, 2410641732796574421, 959429352726023297581, 381850471743224475863026, 151975528324450615370186976, 60485878422659601692858553631
Offset: 1

Views

Author

Richard Choulet, Sep 27 2007

Keywords

Comments

A centered 11-gonal number is defined by (11*r^2 - 11*r + 2)/2 = A069125(r); a 11-gonal number by (9*p^2 - 7*p)/2 = A051682(p).
A number is both these numbers iff exist p and r such that (18*p - 7)^2 = 99*(2*r - 1) + 22.
The Diophantine equation X^2 = 99*Y^2 + 22 is such that : X is given by the sequence 11, 209, 4169, 83171,... in A131216; Y is given by the sequence 1, 21, 419, 8359,... in A083043.
The first equation is such that : p is given by 1, 12, 232, 4621,... which satisfies a(n+2) = 20*a(n+1) - a(n) - 7 and a(n+1) = 10*a(n) - 7/2 + sqrt(396*a(n)^2 - 308*a(n) + 33)/2 with g.f. (1 -9*x +x^2)/( (1-x) * (1 -20*x + x^2) ); r is given by 1, 11, 210, 4180,... which satisfies a(n+2) = 20*a(n+1) - a(n) - 9 and a(n+1) = 10*a(n) - 9/2 + sqrt(396*a(n)^2 - 396*a(n) + 121)/2 with g.f. (1 - 10*x)/( (1-x)*(1 -20*x +x^2) ).

Crossrefs

Cf. A128922.

Programs

  • GAP
    a:=[1,606,241396];; for n in [4..20] do a[n]:=399*a[n-1]-399*a[n-2] +a[n-3]; od; a; # G. C. Greubel, Dec 06 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( x*(1+207*x+x^2)/((1-x)*(1-398*x+x^2)) )); // G. C. Greubel, Dec 06 2019
    
  • Maple
    seq(coeff(series(x*(1+207*x+x^2)/((1-x)*(1-398*x+x^2)), x, n+1), x, n), n = 1..20); # G. C. Greubel, Dec 06 2019
  • Mathematica
    LinearRecurrence[{399,-399,1},{1,606,241396},20] (* Harvey P. Dale, Mar 04 2015 *)
  • PARI
    my(x='x+O('x^20)); Vec(x*(1+207*x+x^2)/((1-x)*(1-398*x+x^2))) \\ G. C. Greubel, Dec 06 2019
    
  • Sage
    def A131215_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+207*x+x^2)/((1-x)*(1-398*x+x^2)) ).list()
    a=A131215_list(20); a[1:] # G. C. Greubel, Dec 06 2019
    

Formula

a(n+2) = 398*a(n+1) - a(n) + 209.
a(n+1) = 199*a(n) + 209/2 + (5/2)*sqrt(6336*a(n)^2 + 6688*a(n) + 1617).
G.f.: z*(1 +207*z +z^2)/((1-z)*(1-398*z+z^2)).
a(1)=1, a(2)=606, a(3)=241396, a(n) = 399*a(n-1) - 399*a(n-2) + a(n-3). - Harvey P. Dale, Mar 04 2015

Extensions

More terms from Paolo P. Lava, Sep 26 2008

A133273 Indices of centered decagonal numbers which are also decagonal numbers.

Original entry on oeis.org

1, 10, 171, 3060, 54901, 985150, 17677791, 317215080, 5692193641, 102142270450, 1832868674451, 32889493869660, 590178020979421, 10590314883759910, 190035489886698951, 3410048503076821200, 61190837565496082641, 1098025027675852666330, 19703259660599851911291
Offset: 1

Views

Author

Richard Choulet, Oct 16 2007

Keywords

Comments

Numbers k such that 80*k^2 - 80*k + 25 is a square.
Also the indices of centered square numbers which are also centered pentagonal numbers. - Colin Barker, Jan 01 2015

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{19,-19,1},{1,10,171},20] (* Harvey P. Dale, Oct 09 2020 *)
  • PARI
    Vec(x*(-1+9*x)/((-1+x)*(1-18*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 01 2015

Formula

a(n+2) = 18*a(n+1) - a(n) - 8.
a(n+1) = 9*a(n) - 4 + sqrt(80*a(n)^2 - 80*a(n) + 25).
G.f.: x*(-1+9*x)/(-1+x)/(1 - 18*x + x^2). - R. J. Mathar, Nov 14 2007
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3). - Colin Barker, Jan 01 2015
Product_{n>=2} (1 - 1/a(n)) = 2/sqrt(5) (= A010532 / 10). - Amiram Eldar, Dec 02 2024

Extensions

More terms from Paolo P. Lava, Nov 25 2008

A280070 Indices of 10-gonal numbers (A001107) that are also centered 10-gonal numbers (A062786).

Original entry on oeis.org

1, 11, 191, 3421, 61381, 1101431, 19764371, 354657241, 6364065961, 114198530051, 2049209474951, 36771572019061, 659839086868141, 11840331991607471, 212466136762066331, 3812550129725586481, 68413436198298490321, 1227629301439647239291, 22028913989715351816911
Offset: 1

Views

Author

Colin Barker, Dec 25 2016

Keywords

Comments

Also positive integers x in the solutions to 4*x^2 - 5*y^2 - 3*x + 5*y - 1 = 0, the corresponding values of y being A133273.

Examples

			11 is in the sequence because the 11th 10-gonal number is 451, which is also the 10th centered 10-gonal number.
		

Crossrefs

Programs

  • PARI
    Vec(x*(1 - 8*x + x^2) / ((1 - x)*(1 - 18*x + x^2)) + O(x^30))

Formula

a(n) = (6 + (5+2*sqrt(5))*(9+4*sqrt(5))^(-n) + (5-2*sqrt(5))*(9+4*sqrt(5))^n)/16.
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 - 8*x + x^2) / ((1 - x)*(1 - 18*x + x^2)).
Showing 1-3 of 3 results.