cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128985 a(n) = (n^3 - n^2)*2^n.

Original entry on oeis.org

0, 16, 144, 768, 3200, 11520, 37632, 114688, 331776, 921600, 2478080, 6488064, 16613376, 41746432, 103219200, 251658240, 606076928, 1443889152, 3406823424, 7969177600, 18496880640, 42630905856, 97626619904, 222264557568
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 30 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3-n^2)*2^n: n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
    
  • Magma
    I:=[0, 16, 144, 768]; [n le 4 select I[n] else 8*Self(n-1) - 24*Self(n-2) + 32*Self(n-3) - 16*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
    
  • Mathematica
    CoefficientList[Series[16 x (1+x)/(1 - 2 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 11 2013 *)
    Table[(n^3-n^2)2^n,{n,30}] (* or *) LinearRecurrence[{8,-24,32,-16},{0,16,144,768},30] (* Harvey P. Dale, Jul 06 2014  *)
  • PARI
    a(n)=(n^3-n^2)<Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 16*x^2*(1 + x)/(1 - 2*x)^4. - Vincenzo Librandi, Feb 11 2013
a(n) = 8*a(n-1) -24*a(n-2) +32*a(n-3) -16*a(n-4). - Vincenzo Librandi, Feb 11 2013

Extensions

Offset corrected by Mohammad K. Azarian, Nov 19 2008