cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129001 Heights of roots in Cartan root systems for exceptional groups: A1, G2, F4, E6, E7, E8.

Original entry on oeis.org

1, 3, 2, 2, 3, 4, 2, 1, 2, 2, 3, 2, 1, 2, 2, 3, 4, 3, 2, 1, 2, 3, 4, 6, 5, 4, 3, 2
Offset: 1

Views

Author

Roger L. Bagula, May 24 2007

Keywords

Comments

Roots heights N(i) Helgasson has in his table for the Cartan roots a(i): delta(n)==Sum[N(i)*a(i),{i,1,n}] h(n)=row sum=Sum[N(i),{i,1,n}] What I found was that my dimension ratio: Dimgroup/DimCartan=h(n )+2 which is not in any of my books. Since exponent sum: Dimgroup=Sum[2*m(i)+1,{i,1,n}] That gives a relationship of sorts between the Poincaré polynomials and the Cartan roots systems: Sum[2*m(i)+1,{i,1,n}]/n=Sum[N(i),{i,1,n}]+2 Table[Apply[Plus, a[n]], {n, 1, 6}] {1, 5, 11, 11, 17, 29} A118889: Table[Apply[Plus, a[n]] + 2, {n, 1, 6}] {3, 7, 13, 13, 19, 31}

Examples

			{1},
{3, 2},
{2, 3, 4, 2},
{1, 2, 2, 3, 2, 1},
{2, 2, 3, 4, 3, 2, 1},
{2, 3, 4, 6, 5, 4, 3, 2}
		

References

  • Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S.: ISBN 0-8218-2848-7, 1978, pp. 460, 476

Crossrefs

Programs

  • Mathematica
    a[1] = {1}; a[2] = {3, 2}; a[3] = {2, 3, 4, 2}; a[4] = {1, 2, 2, 3, 2, 1}; a[5] = {2, 2, 3, 4, 3, 2, 1}; a[6] = {2, 3, 4, 6, 5, 4, 3, 2}; b = Table[a[n], {n, 1, 6}]; Flatten[b]

Formula

a(1) = {1}; a(2) = {3, 2}; a(3) = {2, 3, 4, 2}; a(4) = {1, 2, 2, 3, 2, 1}; a(5) = {2, 2, 3, 4, 3, 2, 1}; a(6) = {2, 3, 4, 6, 5, 4, 3, 2};