A129011 a(n) = floor(n^(4/3)).
0, 1, 2, 4, 6, 8, 10, 13, 16, 18, 21, 24, 27, 30, 33, 36, 40, 43, 47, 50, 54, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 110, 114, 118, 123, 127, 132, 136, 141, 145, 150, 155, 160, 164, 169, 174, 179, 184, 189, 194, 199, 204, 209, 214, 219, 224, 229, 234
Offset: 0
References
- J. Spencer, E. Szemeredi and W. T. Trotter, Unit distances in the Euclidean plane, Graph Theory and Combinatorics, B. Bollabas editor, London: Academic Press, 1984, pp. 293-308.
Links
- R. Churchhouse, A New Theorem in the Additive Theory of Numbers
- P. Erdős, On sets of distances of n points, American Mathematical Monthly 53, pp. 248-250 (1946).
- L. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combin. Probab. Comput. 6(1997).
Programs
-
Mathematica
Table[ Floor[n^(4/3)], {n, 0, 60}] (* Robert G. Wilson v, May 02 2007 *)
-
PARI
a(n) = floor(n^(4/3)); \\ Altug Alkan, Dec 20 2015
-
PARI
a(n) = sqrtnint(n^4, 3); \\ Michel Marcus, Apr 30 2025
Extensions
More terms from Robert G. Wilson v, May 02 2007
Comments