cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129011 a(n) = floor(n^(4/3)).

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 10, 13, 16, 18, 21, 24, 27, 30, 33, 36, 40, 43, 47, 50, 54, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 110, 114, 118, 123, 127, 132, 136, 141, 145, 150, 155, 160, 164, 169, 174, 179, 184, 189, 194, 199, 204, 209, 214, 219, 224, 229, 234
Offset: 0

Views

Author

Jonathan Vos Post, May 01 2007

Keywords

Comments

Churchhouse (1971), as an early example of the use of computers in number theory, conjectured that every positive integer N is the sum of two elements of this sequence and verified the conjecture up to N = 10,000 using the Atlas 1 computer of the Atlas Computer Laboratory at Chilton, U.K. He was able to prove that every sufficiently large integer, N, can be expressed in the form N = floor(n^s) + floor(m^s), n and m being positive integers and s being any number in the interval (1, 4/3). - Peter Bala, Jan 13 2013

References

  • J. Spencer, E. Szemeredi and W. T. Trotter, Unit distances in the Euclidean plane, Graph Theory and Combinatorics, B. Bollabas editor, London: Academic Press, 1984, pp. 293-308.

Crossrefs

Programs

Formula

a(n) = floor(n^(4/3)) = A048766(A000583(n)).

Extensions

More terms from Robert G. Wilson v, May 02 2007