cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129080 Expansion of g.f. x*(x^4 - 5*x^3 + 10*x^2 - 12*x + 4)/((1-x)^2*(1 - 3*x + 2*x^2 - x^3)).

Original entry on oeis.org

4, 8, 14, 25, 48, 99, 215, 482, 1100, 2534, 5865, 13606, 31599, 73425, 170656, 396688, 922146, 2143685, 4983416, 11584987, 26931775, 62608726, 145547572, 338356994, 786584517, 1828587086, 4250949167, 9882257793, 22973462076, 53406819752, 124155792838
Offset: 1

Views

Author

Roger L. Bagula, May 11 2007

Keywords

Crossrefs

Cf. A095263.

Programs

  • Magma
    b:= func< n | n lt 4 select 2^n -1 else 3*Self(n-1) -2*Self(n-2) +Self(n-3) >;
    [2*n+1+b(n): n in [1..40]]; // G. C. Greubel, Apr 12 2021
    
  • Maple
    m:=40; S:=series( x*(x^4-5*x^3+10*x^2-12*x+4)/((1-x)^2*(1-3*x+2*x^2-x^3)), x, m+1):
    seq(coeff(S, x, j), j=1..m); # G. C. Greubel, Apr 12 2021
  • Mathematica
    (* b = A095263 *)
    b[n_]:= b[n]= If[n<4, 2^n -1, 3*b[n-1] -2*b[n-2] +b[n-3]];
    a[n_]:= a[n]= If[n==1, 4, a[n-1] +b[n] -b[n-1] +2];
    Table[a[n], {n, 40}] (*modified by G. C. Greubel, Apr 12 2021 *)
    LinearRecurrence[{5,-9,8,-4,1},{4,8,14,25,48},40] (* Harvey P. Dale, Feb 14 2015 *)
  • Sage
    @CachedFunction
    def b(n): return 2^n -1 if n < 4 else 3*b(n-1) -2*b(n-2) +b(n-3)
    [2*n+1 +b(n) for n in (1..40)] # G. C. Greubel, Apr 12 2021

Formula

a(n) = a(n-1) + A095263(n) - A095263(n-1) + 2.
G.f.: x*(x^4 - 5*x^3 + 10*x^2 - 12*x + 4)/((1-x)^2*(1 - 3*x + 2*x^2 - x^3)). [Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009; corrected by R. J. Mathar, Sep 16 2009]
a(n) = A095263(n) + 2*n + 1. - G. C. Greubel, Apr 12 2021

Extensions

Edited by G. C. Greubel, Apr 12 2021
New name using Maksym Voznyy's g.f., Joerg Arndt, Apr 13 2021