A129081 Primes appearing in partial sums of A030433 (primes ending in 9).
19, 107, 523, 1279, 1787, 4091, 16103, 18041, 46889, 68437, 104561, 155443, 161641, 174367, 187573, 303473, 330587, 359231, 419929, 430517, 634793, 878939, 974507, 1469753, 1510319, 1700851, 1902653, 2836961, 2982841, 3476299, 3807589
Offset: 1
Examples
a(5) = 1787 because 1787 = A030433(1) + A030433(2) + A030433(3) + A030433(4) + A030433(5) + A030433(6) + A030433(7) + A030433(8) + A030433(9) + A030433(10) + A030433(11) + A030433(12) + A030433(13) = 19 + 29 + 59 + 79 + 89 + 109 + 139 + 149 + 179 + 199 + 229 + 239 + 269; and 1787 is a prime number.
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..3000
Programs
-
GAP
P:=Filtered(List([1..5*10^5],n->10*n+9),IsPrime);; a:=Filtered(List([1..Length(P)],i->Sum([1..i],k->P[k])),IsPrime); # Muniru A Asiru, Apr 28 2018
-
Mathematica
With[{pr9s=Select[Prime[Range[3000]],Last[IntegerDigits[#]]==9&]}, Select[ Accumulate[ pr9s],PrimeQ]] (* Harvey P. Dale, Dec 31 2011 *)
-
PARI
{s=0; forprime(p=2, 17300, if(p%10==9, s+=p; if(isprime(s), print1(s, ","))))} /* Klaus Brockhaus, May 13 2007 */
Extensions
Entries checked by Klaus Brockhaus, May 13 2007
Better description from Harvey P. Dale, Dec 31 2011