cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129081 Primes appearing in partial sums of A030433 (primes ending in 9).

Original entry on oeis.org

19, 107, 523, 1279, 1787, 4091, 16103, 18041, 46889, 68437, 104561, 155443, 161641, 174367, 187573, 303473, 330587, 359231, 419929, 430517, 634793, 878939, 974507, 1469753, 1510319, 1700851, 1902653, 2836961, 2982841, 3476299, 3807589
Offset: 1

Views

Author

Tomas Xordan, May 11 2007

Keywords

Examples

			a(5) = 1787 because 1787 = A030433(1) + A030433(2) + A030433(3) + A030433(4) + A030433(5) + A030433(6) + A030433(7) + A030433(8) + A030433(9) + A030433(10) + A030433(11) + A030433(12) + A030433(13) = 19 + 29 + 59 + 79 + 89 + 109 + 139 + 149 + 179 + 199 + 229 + 239 + 269; and 1787 is a prime number.
		

Crossrefs

Programs

  • GAP
    P:=Filtered(List([1..5*10^5],n->10*n+9),IsPrime);;
    a:=Filtered(List([1..Length(P)],i->Sum([1..i],k->P[k])),IsPrime); # Muniru A Asiru, Apr 28 2018
  • Mathematica
    With[{pr9s=Select[Prime[Range[3000]],Last[IntegerDigits[#]]==9&]}, Select[ Accumulate[ pr9s],PrimeQ]] (* Harvey P. Dale, Dec 31 2011 *)
  • PARI
    {s=0; forprime(p=2, 17300, if(p%10==9, s+=p; if(isprime(s), print1(s, ","))))} /* Klaus Brockhaus, May 13 2007 */
    

Formula

a(n) = A030433(1)+A030433(2)+...+A030433(x); a is a prime number.

Extensions

Entries checked by Klaus Brockhaus, May 13 2007
Better description from Harvey P. Dale, Dec 31 2011