cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129109 Sums of three consecutive hexagonal numbers.

Original entry on oeis.org

7, 22, 49, 88, 139, 202, 277, 364, 463, 574, 697, 832, 979, 1138, 1309, 1492, 1687, 1894, 2113, 2344, 2587, 2842, 3109, 3388, 3679, 3982, 4297, 4624, 4963, 5314, 5677, 6052, 6439, 6838, 7249, 7672, 8107, 8554, 9013, 9484, 9967, 10462, 10969, 11488, 12019, 12562
Offset: 0

Views

Author

Jonathan Vos Post, May 24 2007

Keywords

Comments

Arises in hexagonal number analog to A129803 Triangular numbers which are the sum of three consecutive triangular numbers. What are the hexagonal numbers which are the sum of three consecutive hexagonal numbers? Prime for a(0) = 7, a(4) = 139, a(6) = 277, a(8) = 463, a(18) = 2113, a(22) = 3109, a(26) = 4297, a(38) = 9013, a(40) = 9967.

Examples

			a(0) = H(0) + H(1) + H(2) = 0 + 1 + 6 = 7 = 6*0^2 + 9*0 + 7.
a(1) = H(1) + H(2) + H(3) = 1 + 6 + 15 = 22 = 6*1^2 + 9*1 + 7.
a(2) = H(2) + H(3) + H(4) = 6 + 15 + 28 = 49 = 6*2^2 + 9*2 + 7.
		

Crossrefs

Programs

  • Magma
    I:=[7,22,49]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{7,22,49},50] (* Vincenzo Librandi, Feb 20 2012 *)
    Total/@Partition[PolygonalNumber[6,Range[0,50]],3,1] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 14 2020 *)
  • PARI
    a(n)=6*n^2+9*n+7 \\ Charles R Greathouse IV, Feb 20 2012

Formula

a(n) = H(n) + H(n+1) + H(n+2) where H(n) = A000384(n) = n*(2*n-1).
a(n) = 6*n^2 + 9*n + 7.
From Colin Barker, Feb 20 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (7 + x + 4*x^2)/(1-x)^3. (End)
E.g.f.: (7 + 15*x + 6*x^2)*exp(x). - Elmo R. Oliveira, Nov 16 2024