cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129126 Ninth diagonal of table A060850 counting partitions into parts of k kinds.

Original entry on oeis.org

22, 185, 810, 2580, 6765, 15525, 32305, 62337, 113265, 195910, 325193, 521235, 810654, 1228080, 1817910, 2636326, 3753600, 5256711, 7252300, 9869990, 13266099, 17627775, 23177583, 30178575, 38939875, 49822812, 63247635
Offset: 1

Views

Author

Alford Arnold, Apr 03 2007

Keywords

Comments

A slightly different method of calculating this sequence is described in A128627.

Examples

			From A128629 we can construct the table below:
      Deg    #  Associated sequence
  -------  ---  -------------------
        8    1    1  1   2   3    4
       44    2    3  1   3   6   10
       53   11    4  1   4   9   16
       62   11    4  1   4   9   16
       71   11    4  1   4   9   16
      332   12    6  1   6  18   40
      422   12    6  1   6  18   40
      431  111    8  1   8  27   64
      521  111    8  1   8  27   64
      611   12    6  1   6  18   40
     2222    4    7  1   5  15   35
     3221  112   12  1  12  54  160
     3311   22    9  1   9  36  100
     4211  112   12  1  12  54  160
     5111   13   10  1   8  30   80
    22211   23   15  1  12  60  200
    32111  113   20  1  16  90  320
    41111   14   14  1  10  45  140
   221111   24   21  1  15  90  350
   311111   15   22  1  12  63  224
  1111111    8   19  1   9  45  165
  2111111   16   26  1  14  84  336
  -------  ---   -- -- --- --- ----
              Sums: 22 185 810 2580 ...
		

Crossrefs

Programs

  • Maple
    with (numtheory): b:=proc(n) option remember; local d, j; `if` (n=0, 1, add (add (d, d=divisors(j)) *b(n-j), j=1..n)/n) end: A:= proc (n) option remember; local k; `if` (n=0, x, expand (add (b(k-1) *A(n-k) *x^(k-1), k=1..n))) end: a:= n-> coeftayl (A(n+8), x=0, 9): seq(a(n), n=1..40); # Alois P. Heinz, Oct 16 2008
    # second Maple program:
    a:= n-> n*(n+6)*(n+3)*(n+1)*(4200+(9994+(1571+(74+n)*n)*n)*n)/40320:
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 17 2008
  • Mathematica
    LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {22, 185, 810, 2580, 6765, 15525, 32305, 62337, 113265}, 30] (* Jean-François Alcover, Mar 07 2021 *)

Formula

From Alois P. Heinz, Oct 17 2008: (Start)
G.f.: x*(x-2)*(2*x^5-14*x^4+35*x^3-32*x^2-x+11)/(x-1)^9.
a(n) = n*(n+6)*(n+3)*(n+1)*(4200+(9994+(1571+(74+n)*n)*n)*n)/40320. (End)

Extensions

More terms from Alois P. Heinz, Oct 16 2008