A129164 Sum of pyramid weights in all skew Dyck paths of semilength n.
1, 5, 22, 97, 436, 1994, 9241, 43257, 204052, 968440, 4619011, 22120630, 106300507, 512321437, 2475395302, 11986728457, 58156146652, 282640193312, 1375737276787, 6705522150972, 32724071280517, 159878425878847, 781910419686412, 3827639591654862, 18753350784435811
Offset: 1
Keywords
Examples
a(2)=5 because the pyramid weights of the paths (UD)(UD), (UUDD) and U(UD)L are 2, 2 and 1, respectively (the maximal pyramids are shown between parentheses).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
Programs
-
Maple
G:=(1/sqrt(1-6*z+5*z^2)-1/(1-z))/2: Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=1..26);
-
Mathematica
Rest[CoefficientList[Series[(1/Sqrt[1-6*x+5*x^2]-1/(1-x))/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Oct 20 2012 *) a[n_] := (Hypergeometric2F1[1/2, -n, 1, -4]-1)/2; Array[a, 25] (* Jean-François Alcover, Oct 11 2016, after Vladimir Kruchinin *)
-
Maxima
a(n):=n*sum(sum((binomial(-m+2*k-1,k-1)*binomial(n-1,k-1))/k,k,m,n), m,1,n); /* Vladimir Kruchinin, Oct 07 2011 */
-
Maxima
a(n):=sum(binomial(n,k)*binomial(2*k,k),k,1,n)/2; /* Vladimir Kruchinin, Oct 11 2016 */
-
Sage
A129164 = lambda n: n*hypergeometric([1, 3/2, 1-n], [2, 2], -4) [simplify(A129164(n)) for n in (1..25)] # Peter Luschny, Sep 16 2014
Formula
a(n) = Sum_{k=1..n} k*A129163(n,k).
Partial sums of A026378.
G.f. = [1/sqrt(1-6*z+5*z^2)-1/(1-z)]/2.
a(n) = n*Sum_(m=1..n, Sum_(k=m..n,(binomial(-m+2*k-1,k-1)*binomial(n-1,k-1))/k)). - Vladimir Kruchinin, Oct 07 2011
Recurrence: n*a(n) = (7*n-4)*a(n-1) - (11*n-14)*a(n-2) + 5*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 5^(n+1/2)/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
a(n) = n*hypergeometric([1, 3/2, 1-n], [2, 2], -4). - Peter Luschny, Sep 16 2014
a(n) = Sum_{k=1..n} (binomial(n,k)*binomial(2*k,k))/2. - Vladimir Kruchinin, Oct 11 2016
Comments