A129175 Triangle read by rows: MacMahon's q-analog of the Catalan numbers.
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 4, 3, 5, 5, 7, 6, 9, 7, 9, 8, 9, 7, 9, 6, 7, 5, 5, 3, 4, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 13, 12, 16, 16, 19, 18, 22, 20, 23, 21, 23
Offset: 0
Examples
T(4,8)=2 because we have 01001101 (with 10's starting at positions 2 and 6) and 00101011 (with 10's starting at positions 3 and 5). Triangle starts: 1; 1; 1,0,1; 1,0,1,1,1,0,1; 1,0,1,1,2,1,2,1,2,1,1,0,1; 1,0,1,1,2,2,3,2,4,3,4,3,4,2,3,2,2,1,1,0,1;
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.
- P. A. MacMahon, Combinatory analysis, Two volumes (bound as one), Chelsea Publishing Co., New York, 1960 (see p. 214).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see p. 236, Exercise 6.34 b. [From Emeric Deutsch, Nov 05 2008]
Links
- Alois P. Heinz, Rows n = 0..32, flattened
- FindStat - Combinatorial Statistic Finder, The major index of a Dyck path.
- J. Furlinger and J. Hofbauer, q-Catalan numbers, J. Comb. Theory, A, 40, 248-264, 1985.
- M. Shattuck, Parity theorems for statistics on permutations and Catalan words, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 5, Paper A07, 2005.
Programs
-
Maple
br:=n->sum(q^i,i=0..n-1): f:=n->product(br(j),j=1..n): cbr:=(n,k)->f(n)/f(k)/f(n-k): P:=n->sort(expand(simplify(cbr(2*n,n)/br(n+1)))): for n from 0 to 7 do seq(coeff(P(n),q,k),k=0..n*(n-1)) od; # yields sequence in triangular form # second Maple program: b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, expand(b(x-1, y-1, true)+b(x-1, y+1, false)*`if`(t, z^x, 1)))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, false)): seq(T(n), n=0..8); # Alois P. Heinz, Sep 15 2014
-
Mathematica
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y-1, True] + b[x-1, y+1, False]*If[t, z^x, 1]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, False]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *) p[n_] := QBinomial[2n,n,q]/QBinomial[n+1,1,q]; Table[CoefficientList[p[n] // FunctionExpand, q], {n,0,9}] // Flatten (* Peter Luschny, Jul 22 2016 *)
-
Sage
from sage.combinat.q_analogues import q_catalan_number def T(n): return list(q_catalan_number(n)) for n in (0..6): print(T(n)) # Peter Luschny, Jul 19 2016
Formula
The generating polynomial for row n is P[n](t) = binomial[2n,n]/[n+1], where [n+1]=1+t+t^2+...+t^n and binomial[2n,n] is a Gaussian polynomial (due to MacMahon).
Extensions
New name from Peter Luschny, Jul 24 2016
Comments