cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A227543 Triangle defined by g.f. A(x,q) such that: A(x,q) = 1 + x*A(q*x,q)*A(x,q), as read by terms k=0..n*(n-1)/2 in rows n>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 3, 2, 1, 1, 1, 4, 6, 7, 7, 5, 5, 3, 2, 1, 1, 1, 5, 10, 14, 17, 16, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1, 1, 6, 15, 25, 35, 40, 43, 44, 40, 37, 32, 28, 22, 18, 13, 11, 7, 5, 3, 2, 1, 1, 1, 7, 21, 41, 65, 86, 102, 115, 118, 118, 113, 106, 96, 85, 73, 63, 53, 42, 34, 26, 20, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 15 2013

Keywords

Comments

See related triangle A138158.
Row sums are the Catalan numbers (A000108), set q=1 in the g.f. to see this.
Antidiagonal sums equal A005169, the number of fountains of n coins.
The maximum in each row of the triangle is A274291. - Torsten Muetze, Nov 28 2018
The area between a Dyck path and the x-axis may be decomposed into unit area triangles of two types - up-triangles with vertices at the integer lattice points (x, y), (x+1, y+1) and (x+2, y) and down-triangles with vertices at the integer lattice points (x, y), (x-1, y+1) and (x+1, y+1). The table entry T(n,k) equals the number of Dyck paths of semilength n containing k down triangles. See the illustration in the Links section. Cf. A239927. - Peter Bala, Jul 11 2019
The row polynomials of this table are a q-analog of the Catalan numbers due to Carlitz and Riordan. For MacMahon's q-analog of the Catalan numbers see A129175. - Peter Bala, Feb 28 2023

Examples

			G.f.: A(x,q) = 1 + x*(1) + x^2*(1 + q) + x^3*(1 + 2*q + q^2 + q^3)
 + x^4*(1 + 3*q + 3*q^2 + 3*q^3 + 2*q^4 + q^5 + q^6)
 + x^5*(1 + 4*q + 6*q^2 + 7*q^3 + 7*q^4 + 5*q^5 + 5*q^6 + 3*q^7 + 2*q^8 + q^9 + q^10)
 + x^6*(1 + 5*q + 10*q^2 + 14*q^3 + 17*q^4 + 16*q^5 + 16*q^6 + 14*q^7 + 11*q^8 + 9*q^9 + 7*q^10 + 5*q^11 + 3*q^12 + 2*q^13 + q^14 + q^15) +...
where g.f.A(x,q) = Sum_{k=0..n*(n-1)/2, n>=0} T(n,k)*x^n*q^k
satisfies A(x,q) = 1 + x*A(q*x,q)*A(x,q).
This triangle of coefficients T(n,k) in A(x,q) begins:
 1;
 1;
 1, 1;
 1, 2, 1, 1;
 1, 3, 3, 3, 2, 1, 1;
 1, 4, 6, 7, 7, 5, 5, 3, 2, 1, 1;
 1, 5, 10, 14, 17, 16, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1;
 1, 6, 15, 25, 35, 40, 43, 44, 40, 37, 32, 28, 22, 18, 13, 11, 7, 5, 3, 2, 1, 1;
 1, 7, 21, 41, 65, 86, 102, 115, 118, 118, 113, 106, 96, 85, 73, 63, 53, 42, 34, 26, 20, 15, 11, 7, 5, 3, 2, 1, 1;
 1, 8, 28, 63, 112, 167, 219, 268, 303, 326, 338, 338, 331, 314, 293, 268, 245, 215, 190, 162, 139, 116, 97, 77, 63, 48, 38, 28, 22, 15, 11, 7, 5, 3, 2, 1, 1; ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Module[{P, Q},
    P = Sum[q^(m^2) (-x)^m/Product[1-q^j, {j, 1, m}] + x O[x]^n, {m, 0, n}];
    Q = Sum[q^(m(m-1)) (-x)^m/Product[1-q^j, {j, 1, m}] + x O[x]^n, {m, 0, n}];
    SeriesCoefficient[P/Q, {x, 0, n}, {q, 0, k}]
    ];
    Table[T[n, k], {n, 0, 10}, {k, 0, n(n-1)/2}] // Flatten (* Jean-François Alcover, Jul 27 2018, from PARI *)
  • PARI
    /* From g.f. A(x,q) = 1 + x*A(q*x,q)*A(x,q): */
    {T(n, k)=local(A=1); for(i=1, n, A=1+x*subst(A, x, q*x)*A +x*O(x^n)); polcoeff(polcoeff(A, n, x), k, q)}
    for(n=0, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))
    
  • PARI
    /* By Ramanujan's continued fraction identity: */
    {T(n,k)=local(P=1,Q=1);
    P=sum(m=0,n,q^(m^2)*(-x)^m/prod(k=1,m,1-q^k)+x*O(x^n));
    Q=sum(m=0,n,q^(m*(m-1))*(-x)^m/prod(k=1,m,1-q^k)+x*O(x^n));
    polcoeff(polcoeff(P/Q,n,x),k,q)}
    for(n=0, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))
    
  • PARI
    P(x, n) =
    {
        if ( n<=1, return(1) );
        return( sum( i=0, n-1, P(x, i) * P(x, n-1 -i) * x^((i+1)*(n-1 -i)) ) );
    }
    for (n=0, 10, print( Vec( P(x, n) ) ) ); \\ Joerg Arndt, Jan 23 2024
    
  • PARI
    \\ faster with memoization:
    N=11;
    VP=vector(N+1);  VP[1] =VP[2] = 1;  \\ one-based; memoization
    P(n) = VP[n+1];
    for (n=2, N, VP[n+1] = sum( i=0, n-1, P(i) * P(n-1 -i) * x^((i+1)*(n-1-i)) ) );
    for (n=0, N, print( Vec( P(n) ) ) ); \\ Joerg Arndt, Jan 23 2024

Formula

G.f.: A(x,q) = 1/(1 - x/(1 - q*x/(1 - q^2*x/(1 - q^3*x/(1 - q^4*x/(1 -...)))))), a continued fraction.
G.f. satisfies: A(x,q) = P(x,q)/Q(x,q), where
P(x,q) = Sum_{n>=0} q^(n^2) * (-x)^n / Product_{k=1..n} (1-q^k),
Q(x,q) = Sum_{n>=0} q^(n*(n-1)) * (-x)^n / Product_{k=1..n} (1-q^k),
due to Ramanujan's continued fraction identity.
...
Sum_{k=0..n*(n-1)/2} T(n,k)*k = 2^(2*n-1) - C(2*n+1,n) + C(2*n-1,n-1) = A006419(n-1) for n>=1.
Logarithmic derivative of the g.f. A(x,q), wrt x, yields triangle A227532.
From Peter Bala, Jul 11 2019: (Start)
(n+1)th row polynomial R(n+1,q) = Sum_{k = 0..n} q^k*R(k,x)*R(n-k,q), with R(0,q) = 1.
1/A(q*x,q) is the generating function for the triangle A047998. (End)
Conjecture: b(n) = P(n, n) where b(n) is an integer sequence with g.f. B(x) = 1/(1 - f(0)*x/(1 - f(1)*x/(1 - f(2)*x/(1 - f(3)*x/(1 - f(4)*x/(1 -...)))))), P(n, k) = P(n-1, k) + f(n-k)*P(n, k-1) for 0 < k <= n with P(n, k) = 0 for k > n, P(n, 0) = 1 for n >= 0 and where f(n) is an arbitrary function. In fact for this sequence we have f(n) = q^n. - Mikhail Kurkov, Sep 26 2024

A002740 Number of tree-rooted bridgeless planar maps with two vertices and n faces.

Original entry on oeis.org

0, 0, 0, 2, 15, 84, 420, 1980, 9009, 40040, 175032, 755820, 3233230, 13728792, 57946200, 243374040, 1017958725, 4242920400, 17631691440, 73078721100, 302202005490, 1247182879800, 5137916074200, 21132472200840, 86794082253450, 356013544661424, 1458583920435600, 5969389748449400
Offset: 0

Views

Author

Keywords

Comments

a(n) is the sum of the major indices of all Dyck words of length 2n-2. The major index of a Dyck word is the sum of the positions of those 1's that are followed by a 0. Example: a(4)=15 because the Dyck words of length 6 are 010101, 010011, 001101, 001011 and 000111 having major indices 6,2,4,3 and 0, respectively. a(n) = Sum_{k=0..n(n-1)} k*A129175(n,k). - Emeric Deutsch, Apr 20 2007

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933, p. 97.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A129175.
A diagonal of A253180.

Programs

  • Magma
    [(n-2)*Binomial(2*n-2,n-2)/2 : n in [0..30]]; // Wesley Ivan Hurt, Sep 24 2014
  • Maple
    with(combinat):for n from 0 to 22 do printf(`%d, `,n*sum(binomial(2*n, n)/(n+1)/2, k=2..n)) od: # Zerinvary Lajos, Mar 13 2007
    a:=n->sum(sum(binomial(2*n,n)/(n+1)/2, j=1..n),k=2..n): seq(a(n), n=0..25); # Zerinvary Lajos, May 09 2007
    A002740:=n->(n-2)*binomial(2*n-2,n-2)/2+0^n: seq(A002740(n), n=0..30); # Wesley Ivan Hurt, Sep 24 2014
  • Mathematica
    a[n_] := (n-1)(n-2)Binomial[2(n-1), n-1]/(2n); a[0] = 0; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 16 2011 *)
  • MuPAD
    combinat::catalan(n) *binomial(n,2) $ n = 0..22 // Zerinvary Lajos, Feb 15 2007
    
  • PARI
    a(n)=if(n<3,0,(2*(n-1))!/(2*n!*(n-3)!)); /* Joerg Arndt, Sep 28 2012 */
    

Formula

G.f.: (1/2)*(1-(1 - 6*t + 6*t^2)/(1-4*t)^(3/2)).
a(n+3) = (2*(n+2))!/(2*n!*(n+3)!). - Wolfdieter Lang
a(n+2) = Sum_{k=0..n} k*binomial(k+n, k). - Benoit Cloitre, Oct 25 2003
a(n) = Sum_{k=2..n} Sum_{j=1..n} binomial(2*n,n)/(2*(n+1)), n >= 0. - Zerinvary Lajos, May 09 2007
a(n) = (n-2)*binomial(2n-2, n-2)/2 + 0^n. - Wesley Ivan Hurt, Sep 24 2014
E.g.f.: (1 + exp(2*x) * ((2*x - 1) * BesselI(0,2*x) - x * BesselI(1,2*x))) / 2. - Ilya Gutkovskiy, Nov 03 2021
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=3} 1/a(n) = 3 - 4*Pi/(3*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 16*log(phi)/sqrt(5) - 3, where phi is the golden ratio (A001622). (End)

Extensions

Name clarified by Noam Zeilberger, Aug 18 2017

A274886 Triangle read by rows, the q-analog of the extended Catalan numbers A057977.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 2, 3, 5, 6, 8, 9, 11, 11, 12, 11, 11, 9, 8, 6, 5, 3, 2, 1, 1, 1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1
Offset: 0

Views

Author

Peter Luschny, Jul 20 2016

Keywords

Comments

The q-analog of the extended Catalan numbers A057977 are univariate polynomials over the integers with degree floor((n+1)/2)*(floor((n+1)/2)-1)+1.
The q-analog of the Catalan numbers are A129175.
For a combinatorial interpretation in terms of the major index statistic of orbitals see A274888 and the link 'Orbitals'.

Examples

			The polynomials start:
[0] 1
[1] 1
[2] 1
[3] q^2 + q + 1
[4] q^2 + 1
[5] (q^2 + 1) * (q^4 + q^3 + q^2 + q + 1)
[6] (q^2 - q + 1) * (q^4 + q^3 + q^2 + q + 1)
The coefficients of the polynomials are:
[ 0] [1]
[ 1] [1]
[ 2] [1]
[ 3] [1, 1, 1]
[ 4] [1, 0, 1]
[ 5] [1, 1, 2, 2, 2, 1, 1]
[ 6] [1, 0, 1, 1, 1, 0, 1]
[ 7] [1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1]
[ 8] [1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1]
[ 9] [1, 1, 2, 3, 5, 6, 8, 9, 11, 11, 12, 11, 11, 9, 8, 6, 5, 3, 2, 1, 1]
[10] [1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1]
		

Crossrefs

Programs

  • Maple
    QExtCatalan := proc(n) local h, p, P;
    P := x -> QDifferenceEquations:-QPochhammer(q,q,x);
    h := iquo(n, 2): p := `if`(n::even, 1-q, 1); (p*P(n))/(P(h)*P(h+1));
    expand(simplify(expand(%))); seq(coeff(%, q, j), j=0..degree(%)) end:
    seq(QExtCatalan(n, q), n=0..10);
  • Mathematica
    (* Function QBinom1 is defined in A274885. *)
    QExtCatalan[n_] := QBinom1[n] / QBinomial[n+1,1,q]; Table[CoefficientList[ QExtCatalan[n] // FunctionExpand,q], {n,0,10}] // Flatten
  • Sage
    # uses[q_binom1 from A274885]
    from sage.combinat.q_analogues import q_int
    def q_ext_catalan_number(n): return q_binom1(n)//q_int(n+1)
    for n in (0..10): print([n], q_ext_catalan_number(n).list())
    
  • Sage
    # uses[unit_orbitals from A274709]
    # Brute force counting
    def catalan_major_index(n):
        S = [0]*(((n+1)//2)^2 + ((n+1) % 2) - (n//2))
        for u in unit_orbitals(n):
            if any(x > 0 for x in accumulate(u)): continue # never rise above 0
            L = [i+1 if u[i+1] < u[i] else 0 for i in (0..n-2)]
            #    i+1 because u is 0-based whereas convention assumes 1-base.
            S[sum(L)] += 1
        return S
    for n in (0..10): print(catalan_major_index(n))

Formula

q-extCatalan(n,q) = (p*P(n,q))/(P(h,q)*P(h+1,q)) with P(n,q) = q-Pochhammer(n,q), h = floor(n/2) and p = 1-q if n is even else 1.

A129174 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n such that the sum of the peak-abscissae is k (0 <= k <= n^2).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 4, 3, 5, 5, 7, 6, 9, 7, 9, 8, 9, 7, 9, 6, 7, 5, 5, 3, 4, 2, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Emeric Deutsch, Apr 20 2007

Keywords

Comments

Row n contains 1+n^2 entries. Row sums are the Catalan numbers (A000108). Column sums yield A129528. T(n,n+k) = T(n,n^2-k) (i.e., rows are palindromic). Alternating row sums are (-1)^n*binomial(n,floor(n/2)) = A126930(n). Sum_{k=0..n^2} k*T(n,k) = n*binomial(2n-1,n-1) = A002457(n-1). T(n,k) = A129175(n,n-k) (i.e., except for the initial 0's, rows of A129174 and A129175 are the same).

Examples

			T(5,11)=3 because we have (i) UDUDUUUDDD with peak-abscissae 1,3,7, (ii) UUUDDUUDD with peak-abscissae 3,8 and (iii) UUUUDDUDDD with peak-abscissae 4,7; here U=(1,1) and D=(1,-1).
Triangle starts:
  1;
  0,1;
  0,0,1,0,1;
  0,0,0,1,0,1,1,1,0,1;
  0,0,0,0,1,0,1,1,2,1,2,1,2,1,1,0,1;
  ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.

Crossrefs

Programs

  • Maple
    br:=n->sum(q^i,i=0..n-1): f:=n->product(br(j),j=1..n): cbr:=(n,k)->f(n)/f(k)/f(n-k): P:=n->sort(expand(simplify(q^n*cbr(2*n,n)/br(n+1)))): for n from 0 to 7 do seq(coeff(P(n),q,k),k=0..n^2) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
          expand(b(x-1, y+1, 1) +`if`(t=1, z^x, 1)*b(x-1, y-1, 0))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..n^2))(b(2*n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, 1] + If[t == 1, z^x, 1]*b[x-1, y-1, 0]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, z, i], {i, 0, n^2}]][b[2*n, 0, 0]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)

Formula

The generating polynomial for row n is P[n](t) = t^n*binomial[2n,n]/[n+1], where [n+1]=1+t+t^2+...+t^n and binomial[2n,n] is a Gaussian polynomial (in t).

A274887 Triangle read by rows: coefficients of the q-factorial.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 6, 5, 3, 1, 1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1, 1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 1, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1
Offset: 0

Views

Author

Peter Luschny, Jul 19 2016

Keywords

Comments

The main entry for this sequence is A008302 (Mahonian numbers).
q-factorial(n) is a univariate polynomial over the integers with degree n*(n-1)/2.
Evaluated at q=1 the q-factorial(n) gives the factorial A000142(n).

Examples

			The polynomials start:
[0] 1
[1] 1
[2] q + 1
[3] (q + 1) * (q^2 + q + 1)
[4] (q + 1)^2 * (q^2 + 1) * (q^2 + q + 1)
[5] (q + 1)^2 * (q^2 + 1) * (q^2 + q + 1) * (q^4 + q^3 + q^2 + q + 1)
The triangle starts:
[1]
[1]
[1, 1]
[1, 2, 2, 1]
[1, 3, 5, 6, 5, 3, 1]
[1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1]
[1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1]
		

Crossrefs

Cf. A008302 (the same for all n > 0), A000142 (row sums), A063746 (q-central_binomial), A129175 (q-Catalan), A274886 (q-extended_Catalan), A274888 (q-swing_factorial), A275216 (q-binomial), A275215 (q-Narayana).

Programs

  • Magma
    B:= func< n,x | n eq 0 select 1 else (&*[1-x^j: j in [1..n]])/(1-x)^n >;
    R:=PowerSeriesRing(Integers(), 30);
    [Coefficients(R!( B(n,x) )): n in [0..9]]; // G. C. Greubel, May 22 2019
    
  • Mathematica
    Table[CoefficientList[QFactorial[n,q]//FunctionExpand, q], {n,0,9} ]//Flatten
  • PARI
    for(n=0, 8, print1(Vec(if(n==0, 1, prod(j=1, n, 1-x^j)/(1-x)^n)), ", "); print(); ) \\ G. C. Greubel, May 23 2019
  • Sage
    from sage.combinat.q_analogues import q_factorial
    for n in (0..5): print(q_factorial(n).list())
    

Formula

a(n) = A008302(n) for all n > 0. - M. F. Hasler, Jan 06 2024

A274882 a(n) is the largest coefficient of q-binomial(2*n, n) / q-binomial(n+1, 1), which are the q-Catalan polynomials.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 9, 23, 62, 176, 512, 1551, 4822, 15266, 49141, 160728, 532890, 1785162, 6039328, 20617808, 70951548, 245911020, 857888714, 3010811846, 10624583264, 37680980256, 134260382400, 480440869030, 1726092837412, 6224442777366, 22523780202156
Offset: 0

Views

Author

Peter Luschny, Jul 19 2016

Keywords

Crossrefs

Cf. A000108, A129175 (coefficients of q_Catalan polynomials), A275213.

Programs

  • Maple
    with(QDifferenceEquations): MaxQCatalan := proc(n) local P; P := f -> expand(simplify(expand(f))); P(QBinomial(2*n,n,q)/QBrackets(n+1,q)); max(seq(coeff(%,q,j), j=0..degree(%))) end: seq(MaxQCatalan(n), n=0..20);
  • Mathematica
    p[n_] := QBinomial[2n,n,q]/QBinomial[n+1,1,q]; Table[Max[CoefficientList[p[n] // FunctionExpand, q]], {n,0,20}] // Flatten
  • Sage
    from sage.combinat.q_analogues import q_catalan_number
    def T(n): return q_catalan_number(n)
    print([max(T(n)) for n in (0..10)])

Formula

Conjecture: a(n) ~ sqrt(3) * 2^(2*n) / (Pi * n^3). - Vaclav Kotesovec, Jan 06 2023

A384437 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th q-Catalan number for q=k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 5, 1, 1, 1, 10, 93, 14, 1, 1, 1, 17, 847, 6477, 42, 1, 1, 1, 26, 4433, 627382, 1733677, 132, 1, 1, 1, 37, 16401, 18245201, 4138659802, 1816333805, 429, 1, 1, 1, 50, 48205, 256754526, 1197172898385, 244829520301060, 7526310334829, 1430, 1
Offset: 0

Views

Author

Seiichi Manyama, May 29 2025

Keywords

Examples

			Square array begins:
  1,  1,       1,          1,             1,               1, ...
  1,  1,       1,          1,             1,               1, ...
  1,  2,       5,         10,            17,              26, ...
  1,  5,      93,        847,          4433,           16401, ...
  1, 14,    6477,     627382,      18245201,       256754526, ...
  1, 42, 1733677, 4138659802, 1197172898385, 100333200992026, ...
		

Crossrefs

Main diagonal gives A384282.

Programs

  • PARI
    a(n, k) = if(k==1, binomial(2*n, n)/(n+1), (1-k)/(1-k^(n+1))*prod(j=0, n-1, (1-k^(2*n-j))/(1-k^(j+1))));
    
  • Sage
    from sage.combinat.q_analogues import q_catalan_number
    def a(n, k): return q_catalan_number(n, k)

Formula

A(n,k) = q_binomial(2*n, n, k)/q_binomial(n+1, 1, k).
Showing 1-7 of 7 results.