cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A227532 Logarithmic derivative, wrt x, of triangle A227543, as read by terms k=0..n*(n-1)/2 in rows n>=1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 3, 1, 4, 6, 8, 8, 4, 4, 1, 5, 10, 15, 20, 20, 20, 15, 10, 5, 5, 1, 6, 15, 26, 39, 48, 57, 60, 54, 48, 36, 30, 18, 12, 6, 6, 1, 7, 21, 42, 70, 98, 126, 154, 168, 175, 168, 154, 133, 112, 84, 70, 49, 35, 21, 14, 7, 7, 1, 8, 28, 64, 118, 184, 256, 336, 408, 472, 516, 536, 532, 504, 464, 408, 360, 296, 248, 192, 152, 112, 88, 56, 40, 24, 16, 8, 8
Offset: 1

Views

Author

Paul D. Hanna, Jul 14 2013

Keywords

Examples

			L.g.f.: L(x,q) = x*(1) + x^2*(1 + 2*q)/2 + x^3*(1 + 3*q + 3*q^2 + 3*q^3)/3
+ x^4*(1 + 4*q + 6*q^2 + 8*q^3 + 8*q^4 + 4*q^5 + 4*q^6)/4
+ x^5*(1 + 5*q + 10*q^2 + 15*q^3 + 20*q^4 + 20*q^5 + 20*q^6 + 15*q^7 + 10*q^8 + 5*q^9 + 5*q^10)/5
+ x^6*(1 + 6*q + 15*q^2 + 26*q^3 + 39*q^4 + 48*q^5 + 57*q^6 + 60*q^7 + 54*q^8 + 48*q^9 + 36*q^10 + 30*q^11 + 18*q^12 + 12*q^13 + 6*q^14 + 6*q^15)/6 +...
where exponentiation yields the g.f. of triangle A227543:
exp(L(x,q)) = 1 + x*(1) + x^2*(1 + q) + x^3*(1 + 2*q + q^2 + q^3)
+ x^4*(1 + 3*q + 3*q^2 + 3*q^3 + 2*q^4 + q^5 + q^6)
+ x^5*(1 + 4*q + 6*q^2 + 7*q^3 + 7*q^4 + 5*q^5 + 5*q^6 + 3*q^7 + 2*q^8 + q^9 + q^10)
+ x^6*(1 + 5*q + 10*q^2 + 14*q^3 + 17*q^4 + 16*q^5 + 16*q^6 + 14*q^7 + 11*q^8 + 9*q^9 + 7*q^10 + 5*q^11 + 3*q^12 + 2*q^13 + q^14 + q^15) +...
This triangle begins:
1;
1, 2;
1, 3, 3, 3;
1, 4, 6, 8, 8, 4, 4;
1, 5, 10, 15, 20, 20, 20, 15, 10, 5, 5;
1, 6, 15, 26, 39, 48, 57, 60, 54, 48, 36, 30, 18, 12, 6, 6;
1, 7, 21, 42, 70, 98, 126, 154, 168, 175, 168, 154, 133, 112, 84, 70, 49, 35, 21, 14, 7, 7;
1, 8, 28, 64, 118, 184, 256, 336, 408, 472, 516, 536, 532, 504, 464, 408, 360, 296, 248, 192, 152, 112, 88, 56, 40, 24, 16, 8, 8;
1, 9, 36, 93, 189, 324, 489, 684, 891, 1101, 1305, 1476, 1611, 1683, 1701, 1665, 1593, 1476, 1350, 1197, 1053, 900, 765, 630, 522, 405, 324, 243, 189, 135, 99, 63, 45, 27, 18, 9, 9; ...
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(A=1); for(i=1, n, A=1+x*subst(A, x, q*x)*A +x*O(x^n)); n*polcoeff(polcoeff(log(A), n, x), k, q)}
    for(n=1, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))
    
  • PARI
    /* By Ramanujan's continued fraction identity: */
    {T(n, k)=local(P=1, Q=1);
    P=sum(m=0, n+1, q^(m^2)*(-x)^m/prod(k=1, m, 1-q^k) +O(x^(n+2)));
    Q=sum(m=0, n+1, q^(m*(m-1))*(-x)^m/prod(k=1, m, 1-q^k) +O(x^(n+2)));
    polcoeff(polcoeff(P'/P - Q'/Q, n-1, x), k, q)}
    for(n=1, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Dec 28 2016

Formula

L.g.f.: Sum_{k=0..n*(n-1)/2, n>=1} T(n,k)*x^n*q^k/n = Log(G(x,q)) where G(x,q) = 1 + x*G(q*x,q)*G(x,q) is the g.f. of triangle A227543.
Row sums form A001700, the logarithmic derivative of the Catalan numbers.
Sum_{k=0..n*(n-1)/2} T(n,k) = binomial(2*n-1, n-1), for n>=1.
Sum_{k=0..n*(n-1)/2} T(n,k)*(-1)^k = (-1)^[n/2] * binomial(n-1, [(n-1)/2]).
Sum_{k=0..n*(n-1)/2} k*T(n,k) = n*2^(2*n-2) - (2*n-1)*binomial(2*n-2,n-1) = A153338(n), for n>=1.
Sum_{k=0..n*(n-1)/2} T(n,k)*exp(2*Pi*I*k/n) = (-1)^(n-1) for n>=1; i.e., the n-th row sum at q = exp(2Pi*I/n), the n-th root of unity, equals -(-1)^n for n>=1.
Sum_{k=0..[n/2]} T(n, n*k) = A145855(n), the number of n-member subsets of 1..2n-1 whose elements sum to a multiple of n.
L.g.f. satisfies: L'(x,q) = P'(x,q)/P(x,q) - Q'(x,q)/Q(x,q), where
P(x,q) = Sum_{n>=0} q^(n^2) * (-x)^n / Product_{k=1..n} (1-q^k),
Q(x,q) = Sum_{n>=0} q^(n*(n-1)) * (-x)^n / Product_{k=1..n} (1-q^k),
due to Ramanujan's continued fraction identity. - Paul D. Hanna, Dec 28 2016

A376527 a(n) = Sum_{k=0..n*(n-1)/2} A227543(n,k)^2 for n >= 0.

Original entry on oeis.org

1, 1, 2, 7, 34, 216, 1610, 13461, 122254, 1183568, 12054498, 127960158, 1405852350, 15901061916, 184381675404, 2184565641269, 26375002217314, 323767457670588, 4033503712929478, 50917059047932592, 650430305337318538, 8398511711996887848, 109507259507469905574, 1440631950110092280386
Offset: 0

Views

Author

Paul D. Hanna, Oct 11 2024

Keywords

Comments

Compare to binomial(2*n,n)/(n+1) = Sum_{k=0..n*(n-1)/2} A227543(n,k) for n >= 0; that is, the row sums of A227543 equals the Catalan numbers (A000108).
G.f. F(x,q) of triangle A227543 satisfies F(x,q) = 1 + x*F(x,q)*F(q*x,q).
Conjecture: a(n) is odd iff n = 2^k - 1 for some k >= 0.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 34*x^4 + 216*x^5 + 1610*x^6 + 13461*x^7 + 122254*x^8 + 1183568*x^9 + 12054498*x^10 + ...
where coefficient a(n) of x^n in A(x) equals the sum of the square of the terms in row n of triangle A227543, as follows.
a(0) = 1^2 = 1;
a(1) = 1^2 = 1;
a(2) = 1^2 + 1^2 = 2;
a(3) = 1^2 + 2^2 + 1^2 + 1^2 = 7;
a(4) = 1^2 + 3^2 + 3^2 + 3^2 + 2^2 + 1^2 + 1^2 = 34;
a(5) = 1^2 + 4^2 + 6^2 + 7^2 + 7^2 + 5^2 + 5^2 + 3^2 + 2^2 + 1^2 + 1^2 = 216;
a(6) = 1^2 + 5^2 + 10^2 + 14^2 + 17^2 + 16^2 + 16^2 + 14^2 + 11^2 + 9^2 + 7^2 + 5^2 + 3^2 + 2^2 + 1^2 + 1^2 = 1610;
...
		

Crossrefs

Cf. A227543.

Programs

  • PARI
    \\ From g.f. of A227543, F(x, q) = 1 + x*F(q*x, q)*F(x, q)
    {A227543(n, k) = my(F=1); for(i=1, n, F = 1 + x*F*subst(F, x, q*x) +x*O(x^n)); polcoef(polcoef(F, n, x), k, q)}
    {a(n) = sum(k=0, n*(n-1)/2, A227543(n, k)^2)}
    for(n=0,25, print1(a(n),", "))
    
  • PARI
    \\ faster (using program by Joerg Arndt in A227543)
    N=30;
    VP=vector(N+1); VP[1] = VP[2] = 1;  \\ one-based; memoization
    P(n) = VP[n+1];
    for (n=2, N, VP[n+1] = sum( i=0, n-1, P(i) * P(n-1 -i) * x^((i+1)*(n-1-i)) );print1(n,",") );
    for(n=0,N, AV=Vec(P(n)); print1(AV*AV~,", "))

Formula

a(n) ~ c * 16^n / n^(9/2), where c = 0.430217025951475334005904244213062400539... - Vaclav Kotesovec, Oct 11 2024

A015083 Carlitz-Riordan q-Catalan numbers (recurrence version) for q=2.

Original entry on oeis.org

1, 1, 3, 17, 171, 3113, 106419, 7035649, 915028347, 236101213721, 121358941877763, 124515003203007345, 255256125633703622475, 1046039978882750301409545, 8571252355254982356001107795, 140448544236464264647066322058465, 4602498820363674769217316088142020635
Offset: 0

Views

Author

Keywords

Comments

Limit_{n->inf} a(n)/2^((n-1)(n-2)/2) = Product{k>=1} 1/(1-1/2^k) = 3.462746619455... (cf. A065446). - Paul D. Hanna, Jan 24 2005
It appears that the Hankel transform is 2^A002412(n). - Paul Barry, Aug 01 2008
Hankel transform of aerated sequence is A125791. - Paul Barry, Dec 15 2010

Examples

			G.f. = 1 + x + 3*x^2 + 17*x^3 + 171*x^4 + 3113*x^5 + 106419*x^6 + 7035649*x^7 + ...
From _Seiichi Manyama_, Dec 05 2016: (Start)
a(1) = 1,
a(2) = 2^1 + 1 = 3,
a(3) = 2^3 + 2^2 + 2*2^1 + 1 = 17,
a(4) = 2^6 + 2^5 + 2*2^4 + 3*2^3 + 3*2^2 + 3*2^1 + 1 = 171. (End)
		

Crossrefs

Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), this sequence (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=2 of A090182, A290759.

Programs

  • Mathematica
    a[n_] := a[n] = Sum[2^i*a[i]*a[n - i - 1], {i, 0, n - 1}];
    a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
    m = 17; ContinuedFractionK[If[i == 1, 1, -2^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
  • PARI
    a(n)=if(n==0,1,sum(i=0,n-1,2^i*a(i)*a(n-1-i))) \\  Paul D. Hanna
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, A = vector(n, i, 1); for(k=0, n-1, A[k+1] = if( k<1, 1, A[k]*(1+2^k) + sum(i=1, k-1, 2^i * A[i] * A[k-i]))); A[n])}; /* Michael Somos, Jan 30 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = O(x); for(k=1, n, A = 1 / (1 - x * subst(A, x, 2*x))); polcoeff(A, n))}; /* Michael Somos, Jan 30 2005 */
    
  • Ruby
    def A(q, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
      ary
    end
    def A015083(n)
      A(2, n)
    end # Seiichi Manyama, Dec 24 2016

Formula

a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=2 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(2*x)) = 1/(1-x/(1-2*x/(1-2^2*x/(1-2^3*x/(1-...))))) (continued fraction). - Paul D. Hanna, Jan 24 2005
G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=0..n-1} 2^k*x*A(2^k*x). - Paul D. Hanna, May 17 2010
a(n) = the upper left term in M^(n-1), M = the infinite square production matrix:
1, 2, 0, 0, 0, ...
1, 2, 4, 0, 0, ...
1, 2, 4, 8, 0, ...
1, 2, 4, 8, 16, ...
...
Also, a(n+1) = sum of top row terms of M^(n-1). Example: top row of M^3 = (17, 34, 56, 64, 0, 0, 0, ...); where a(4) = 17 and a(5) = 171 = (17 + 34 + 56 + 64). - Gary W. Adamson, Jul 14 2011
G.f.: T(0), where T(k) = 1 - x*(2^k)/(x*(2^k) - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013

Extensions

Offset changed to 0 by Seiichi Manyama, Dec 05 2016

A090192 Carlitz-Riordan q-Catalan numbers (recurrence version) for q = -1.

Original entry on oeis.org

1, 1, 0, -1, 0, 2, 0, -5, 0, 14, 0, -42, 0, 132, 0, -429, 0, 1430, 0, -4862, 0, 16796, 0, -58786, 0, 208012, 0, -742900, 0, 2674440, 0, -9694845, 0, 35357670, 0, -129644790, 0, 477638700, 0, -1767263190, 0, 6564120420, 0, -24466267020, 0, 91482563640, 0, -343059613650, 0
Offset: 0

Views

Author

Philippe Deléham, Jan 22 2004

Keywords

Comments

Hankel transform is (-1)^C(n+1,2). - Paul Barry, Feb 15 2008

Examples

			G.f. = 1 + x - x^3 + 2*x^5 - 5*x^7 + 14*x^9 - 42*x^11 + 132*x^13 - 429*x^15 + ...
		

Crossrefs

Cf. A227543.
Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), this sequence (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=1 of A290789.

Programs

  • Maple
    A090192_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]-add(a[j]*a[w-j-1], j=1..w-1) od;
    convert(a, list) end: A090192_list(48); # Peter Luschny, May 19 2011
    a := n -> hypergeom([-n+1,-n],[2],-1); seq(round(evalf(a(n), 69)), n=0..48); # Peter Luschny, Sep 22 2014
    a:= proc(n) if n::even then 0 else (-1)^((n-1)/2)*binomial(n+1,(n+1)/2)/(2*n) fi end proc: a(0):= 1:
    seq(a(n), n=0..100); # Robert Israel, Sep 22 2014
  • Mathematica
    CoefficientList[Series[(2 x - 1 + Sqrt[1 + 4*x^2])/(2 x), {x, 0, 50}],
      x] (* G. C. Greubel, Dec 24 2016 *)
    Table[Hypergeometric2F1[1 - n, -n, 2, -1], {n, 0, 48}] (* Michael De Vlieger, Dec 26 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n++; A = vector(n); A[1] = 1; for( k=2, n, A[k] = 2 * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 23 2011 */
    
  • PARI
    Vec((2*x - 1 + sqrt(1+4*x^2))/(2*x) + O(x^50)) \\ G. C. Greubel, Dec 24 2016
  • Ruby
    def A(q, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
      ary
    end
    def A090192(n)
      A(-1, n)
    end # Seiichi Manyama, Dec 24 2016
    
  • Sage
    def A090192_list(n) :
        D = [0]*(n+2); D[1] = 1
        b = True; h = 1; R = []
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] -= D[k-1]
                h += 1; R.append(D[1])
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
        return R
    A090192_list(49) # Peter Luschny, Jun 03 2012
    

Formula

a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=-1 and a(0)=1.
G.f.: 1+x*c(-x^2), where c(x) is the g.f. of A000108; a(n) = 0^n+C((n-1)/2)(-1)^((n-1)/2)(1-(-1)^n)/2, where C(n) = A000108(n). - Paul Barry, Feb 15 2008
G.f.: 1/(1-x/(1+x/(1-x/(1+x/(1-x/(1+x/(1-.... (continued fraction). - Paul Barry, Jan 15 2009
a(n) = 2 * a(n-1) - Sum_{k=1..n} a(k-1) * a(n-k) if n>0. - Michael Somos, Jul 23 2011
G.f.: (2*x-1+sqrt(1+4*x^2))/(2*x). - Philippe Deléham, Nov 07 2011
E.g.f.: x*hypergeom([1/2],[2,3/2],-x^2) = A(x) = x*(1-x^2/(Q(0)+x^2)); Q(k) = 2*(k^3)+9*(k^2)+(13-2*(x^2))*k-(x^2)+6+(x^2)*(k+1)*(k+2)*((2*k+3)^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 22 2011
G.f.: 2 + (G(0)-1)/(2*x) where G(k)=1 - 4*x/(1 + 1/G(k+1) ); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 08 2012
G.f.: 2 + (G(0) -1)/x, where G(k)= 1 - x/(1 + x/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
G.f.: 1 - 1/(2*x) + G(0)/(4*x), where G(k)= 1 + 1/(1 - 2*x^2*(2*k-1)/(2*x^2*(2*k-1) - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
G.f.: 1- x/(Q(0) + 2*x^2), where Q(k)= (4*x^2 - 1)*k - 2*x^2 - 1 + 2*x^2*(k+1)*(2*k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
G.f.: 1+ x/Q(0), where Q(k) = 2*k+1 - x^2*(1-4*(k+1)^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 09 2014
D-finite with recurrence: (n+3)*a(n+2) = -4*n*a(n), a(0)=a(1)=1. For nonzero terms, a(n) ~ (-1)^((n+3)/2)/sqrt(2*Pi)*2^(n+1)/(n+1)^(3/2). - Fung Lam, Mar 17 2014
a(n) = hypergeom([-n+1,-n], [2], -1). - Peter Luschny, Sep 22 2014
G.f. A(x) satisfies A(x) = 1 / (1 - x * A(-x)). - Michael Somos, Dec 26 2016
From Peter Bala, May 13 2024: (Start)
a(n) = 2^n * Integral_{x = 0..1} LegendreP(n, x) dx.
a(n) = Sum_{k = 0..floor(n/2)} (-1)^k*binomial(n,k)*binomial(2*n-2*k,n)/(n-2*k+1).
a(n) = Sum_{k = 0..n} (-1)^k * 2^(n-k)*binomial(n,k)*binomial(n+k,k)/(k + 1).
a(n) = 2^n * hypergeom([n + 1, -n], [2], 1/2).
a(n) = 1/n * Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(n,k+1) for n >= 1.
a(n) = 2^(n-1) * Gamma(1/2)/(Gamma((2-n)/2)*Gamma((n+3)/2)). (End)

A015084 Carlitz-Riordan q-Catalan numbers for q=3.

Original entry on oeis.org

1, 1, 4, 43, 1252, 104098, 25511272, 18649337311, 40823535032644, 267924955577741566, 5274102955963545775864, 311441054994969341088610030, 55171471477692117486494217498280
Offset: 0

Views

Author

Keywords

Comments

Limit_{n->inf} a(n)/3^((n-1)(n-2)/2) = Product{k>=1} 1/(1-1/3^k) = 1.785312341998534190367486296013703535718796... - Paul D. Hanna, Jan 24 2005
It appears that the Hankel transform is 3^A002412(n). - Paul Barry, Aug 01 2008
Hankel transform of the aerated sequence is 3^C(n+1,3). - Paul Barry, Oct 31 2008

Examples

			G.f. = 1 + x + 4*x^2 + 43*x^3 + 1252*x^4 + 104098*x^5 + 25511272*x^6 + ...
From _Seiichi Manyama_, Dec 05 2016: (Start)
a(1) = 1,
a(2) = 3^1 + 1 = 4,
a(3) = 3^3 + 3^2 + 2*3^1 + 1 = 43,
a(4) = 3^6 + 3^5 + 2*3^4 + 3*3^3 + 3*3^2 + 3*3^1 + 1 = 1252. (End)
		

Crossrefs

Cf. A227543.
Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), this sequence (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=3 of A090182, A290759.

Programs

  • Maple
    A015084 := proc(n)
        option remember;
        if n = 1 then
            1;
        else
        add(3^(i-1)*procname(i)*procname(n-i),i=1..n-1) ;
        end if;
    end proc: # R. J. Mathar, Sep 29 2012
  • Mathematica
    a[n_] := a[n] = Sum[3^i*a[i]*a[n -i -1], {i, 0, n -1}]; a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
    m = 13; ContinuedFractionK[If[i == 1, 1, -3^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
  • PARI
    a(n)=if(n==1,1,sum(i=1,n-1,3^(i-1)*a(i)*a(n-i))) \\ Paul D. Hanna
    
  • Ruby
    def A(q, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
      ary
    end
    def A015084(n)
      A(3, n)
    end # Seiichi Manyama, Dec 24 2016

Formula

a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=3 and a(0)=1.
G.f. satisfies: A(x) = 1/(1-x*A(3*x)) = 1/(1-x/(1-3*x/(1-3^2*x/(1-3^3*x/(1-...))))) (continued fraction). - Paul D. Hanna, Jan 24 2005
a(n) = the upper left term in M^n, M an infinite production matrix as follows:
1, 3, 0, 0, 0, 0, ...
1, 3, 9, 0, 0, 0, ...
1, 3, 9, 27, 0, 0, ...
1, 3, 9, 27, 81, 0, ...
... - Gary W. Adamson, Jul 14 2011
G.f.: T(0), where T(k) = 1 - x*3^k/(x*3^k - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 18 2013

Extensions

More terms from Paul D. Hanna, Jan 24 2005
Offset changed to 0 by Seiichi Manyama, Dec 05 2016

A015085 Carlitz-Riordan q-Catalan numbers (recurrence version) for q=4.

Original entry on oeis.org

1, 1, 5, 89, 5885, 1518897, 1558435125, 6386478643785, 104648850228298925, 6858476391221411106209, 1797922152786660462507074405, 1885261615172756172119161342909753
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 5*x^2 + 89*x^3 + 5885*x^4 + 1518897*x^5 + 1558435125*x^6 + ...
From _Seiichi Manyama_, Dec 05 2016: (Start)
a(1) = 1,
a(2) = 4^1 + 1 = 5,
a(3) = 4^3 + 4^2 + 2*4^1 + 1 = 89,
a(4) = 4^6 + 4^5 + 2*4^4 + 3*4^3 + 3*4^2 + 3*4^1 + 1 = 5885. (End)
		

Crossrefs

Cf. A227543.
Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), this sequence (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=4 of A090182, A290759.

Programs

  • Mathematica
    a[n_] := a[n] = Sum[4^i*a[i]*a[n -i -1], {i, 0, n -1}]; a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
    m = 12; ContinuedFractionK[If[i == 1, 1, -4^(i - 2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
  • Ruby
    def A(q, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
      ary
    end
    def A015085(n)
      A(4, n)
    end # Seiichi Manyama, Dec 24 2016

Formula

a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=4 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(4*x)) = 1/(1-x/(1-4*x/(1-4^2*x/(1-4^3*x/(1-...))))) (continued fraction). - Seiichi Manyama, Dec 26 2016
a(n) ~ c * 2^(n*(n-1)), where c = Product{j>=1} 1/(1-1/4^j) = 1/QPochhammer(1/4) = 1.4523536424495970158347130224852748733612279788... - Vaclav Kotesovec, Nov 03 2021

Extensions

Offset changed to 0 by Seiichi Manyama, Dec 05 2016

A015097 Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-2.

Original entry on oeis.org

1, 1, -1, -7, 47, 873, -26433, -1749159, 220526159, 56904690761, -29022490524961, -29777360924913095, 60924625361199230575, 249669263740090899509545, -2044791574538659983034398465, -33505955988983997787211823466215
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x - x^2 - 7*x^3 + 47*x^4 + 873*x^5 + ...
		

Crossrefs

Cf. A227543.
Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), this sequence (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=2 of A290789.

Programs

  • Mathematica
    m = 16;
    ContinuedFractionK[If[i == 1, 1, (-1)^(i+1) 2^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
  • Python
    l=[1]
    for n in range(1, 21):
        l.append(sum([(-2)**i*l[i]*l[n - 1 - i] for i in range(n)]))
    print(l) # Indranil Ghosh, Aug 14 2017
  • Ruby
    def A(q, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
      ary
    end
    def A015097(n)
      A(-2, n)
    end # Seiichi Manyama, Dec 24 2016
    

Formula

a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=-2 and a(0)=1.
G.f: 1/(1-x/(1+2x/(1-4x/(1+8x/(1-16x/(1+... (continued fraction). - Paul Barry, Jan 15 2009
G.f. satisfies: A(x) = 1 / (1 - x*A(-2*x)). - Seiichi Manyama, Dec 27 2016

Extensions

Offset changed to 0 by Seiichi Manyama, Dec 24 2016

A015098 Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-3.

Original entry on oeis.org

1, 1, -2, -23, 586, 48778, -11759396, -8596478231, 18783386191762, 123275424165263086, -2426183754235085042972, -143268577734839493464012630, 25379312219817753259837452498340
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x - 2*x^2 - 23*x^3 + 586*x^4 + 48778*x^5 + ...
		

Crossrefs

Cf. A227543.
Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), this sequence (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=3 of A290789.

Programs

  • Mathematica
    a[1] := 1; a[n_] := a[n] = Sum[(-3)^(i - 1)*a[i]*a[n - i], {i, 1, n - 1}]; Array[a, 20, 1] (* G. C. Greubel, Dec 24 2016 *)
    m = 13; ContinuedFractionK[If[i == 1, 1, (-1)^(i+1) 3^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
  • Ruby
    def A(q, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
      ary
    end
    def A015098(n)
      A(-3, n)
    end # Seiichi Manyama, Dec 24 2016

Formula

a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=-3 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(-3*x)) = 1/(1-x/(1+3*x/(1-3^2*x/(1+3^3*x/(1-...))))) (continued fraction). - Seiichi Manyama, Dec 27 2016

Extensions

Offset changed to 0 by Seiichi Manyama, Dec 24 2016

A015099 Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-4.

Original entry on oeis.org

1, 1, -3, -55, 3429, 885137, -904638963, -3707218743911, 60731665539301365, 3980231929565571675617, -1043385959026442521712292579, -1094071562179856506263860787078039
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x - 3*x^2 - 55*x^3 + 3429*x^4 + 885137*x^5 + ...
		

Crossrefs

Cf. A227543.
Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), this sequence (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=4 of A290789.

Programs

  • Mathematica
    a[1] := 1; a[n_] := a[n] = Sum[(-4)^(i - 1)*a[i]*a[n - i], {i, 1, n - 1}]; Array[a, 20, 1] (* G. C. Greubel, Dec 24 2016 *)
  • Ruby
    def A(q, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
      ary
    end
    def A015099(n)
      A(-4, n)
    end # Seiichi Manyama, Dec 24 2016

Formula

a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=-4 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(-4*x)) = 1/(1-x/(1+4*x/(1-4^2*x/(1+4^3*x/(1-...))))) (continued fraction). - Seiichi Manyama, Dec 27 2016

Extensions

Offset changed to 0 by Seiichi Manyama, Dec 24 2016

A015086 Carlitz-Riordan q-Catalan numbers (recurrence version) for q=5.

Original entry on oeis.org

1, 1, 6, 161, 20466, 12833546, 40130703276, 627122621447281, 48995209411107768186, 19138851672289046707772366, 37380607950584029444762130426196, 365045074278810327614287737714877590426, 17824467247610520516685844671190387550839429556, 4351676609772600016156555731067955626656370700291086836
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 6*x^2 + 161*x^3 + 20466*x^4 + 12833546*x^5 + 40130703276*x^6 + ...
		

Crossrefs

Cf. A227543.
Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), this sequence (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=5 of A090182, A290759.

Programs

  • Mathematica
    a[n_] := a[n] = Sum[5^i*a[i]*a[n -i -1], {i, 0, n -1}];
    a[0] = 1; Array[a, 12, 0] (* Robert G. Wilson v, Dec 24 2016 *)
    m = 11; ContinuedFractionK[If[i == 1, 1, -5^(i - 2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
  • Ruby
    def A(q, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
      ary
    end
    def A015086(n)
      A(5, n)
    end # Seiichi Manyama, Dec 24 2016

Formula

a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=5 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(5*x)) = 1/(1-x/(1-5*x/(1-5^2*x/(1-5^3*x/(1-...))))) (continued fraction). - Seiichi Manyama, Dec 26 2016

Extensions

Offset changed to 0 by Seiichi Manyama, Dec 24 2016
Showing 1-10 of 39 results. Next