A201075 Irregular triangle read by rows: number of Schroeder paths of length n and weighted area n^2-k.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 4, 3, 3, 3, 1, 1, 1, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 10, 7, 6, 4, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 14, 17, 22, 25, 27, 31, 34, 34, 33, 31, 28, 21, 14, 10, 5, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 26, 31, 37, 45, 54
Offset: 0
Examples
Triangle begins: 1 1 1 1 1 1 2 1 1 1 1 2 3 4 3 3 3 1 1 1 1 2 3 4 5 7 8 9 10 11 10 7 6 4 1 ...
Links
- Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953.
Programs
-
Mathematica
gf = Expand /@ FixedPoint[1 + x # (1 + q Normal@# /. {x :> q^2 x}) + O[x]^7 &, 0]; Flatten[Reverse[CoefficientList[#, q]] & /@ CoefficientList[gf, x]] (* Andrey Zabolotskiy, Jan 03 2024 *)
Extensions
More terms from Andrey Zabolotskiy, Jan 03 2024
Comments