cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129203 a(n) = numerator(3/(n+1)^3)*(3/2 + (-1)^n/2).

Original entry on oeis.org

6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1
Offset: 0

Views

Author

Paul Barry, Apr 03 2007

Keywords

Comments

(1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*(n+1)*t)*((t-Pi)/i)^3 = (A129202(n)*Pi^2 - a(n))/A129196(n), i=sqrt(-1).
Periodic with period 6. - Alois P. Heinz, Oct 03 2012

Crossrefs

Cf. sequences listed in Comments section of A283393.

Programs

  • GAP
    List(List([0..10],n->3/(n+1)^3*(3/2+(-1)^n/2)),NumeratorRat); # Muniru A Asiru, Jul 01 2018
  • Magma
    [Numerator(3/(n+1)^3)*(3/2 + (-1)^n/2): n in [1..100]]; // Vincenzo Librandi, Jul 01 2018
    
  • Magma
    &cat [[6, 3, 2, 3, 6, 1]^^20]; // Vincenzo Librandi, Jul 01 2018
    
  • Maple
    a:= n-> [6, 3, 2, 3, 6, 1][irem(n, 6)+1]:
    seq(a(n), n=0..119);  # Alois P. Heinz, Oct 03 2012
  • Mathematica
    Array[Numerator[3/(# + 1)^3] (3/2 + (-1)^#/2) &, 105, 0] (* or *)
    PadRight[{}, 105, {6, 3, 2, 3, 6, 1}] (* Michael De Vlieger, Jun 30 2018 *)
    CoefficientList[ Series[-(x^5 + 6x^4 + 3x^3 + 2x^2 + 3x + 6)/(x^6 - 1), {x, 0,
       105}], x] (* or *)
    LinearRecurrence[{0, 0, 0, 0, 0, 1}, {6, 3, 2, 3, 6, 1}, 105] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    a(n)=[6, 3, 2, 3, 6, 1][n%6+1] \\ Charles R Greathouse IV, Oct 28 2014
    
  • Sage
    def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
    def A129203(n): return Gauss_factorial(3, n+1)
    [A129203(j) for j in (0..71)] # Peter Luschny, Oct 01 2012
    

Formula

G.f.: (6 + 3*x + 2*x^2 + 3*x^3 + 6*x^4 + x^5)/(1 - x^6).
a(n) = cos(2*Pi*n/3) + sqrt(3)*sin(2*Pi*n/3) + cos(Pi*n/3)/3 - sqrt(3)*sin(Pi*n/3)/3 + 7*cos(Pi*n)/6 + 7/2.
a(n) = numerator(6/(n+1)^2). - Paul Barry, Apr 03 2007
a(n) = denominator of coefficient of x^6 in the Maclaurin expansion of -exp(-(n+1)*x^2). - Francesco Daddi, Aug 04 2011
a(n) = 3_(n+1)! = Gauss_factorial(3, n+1) = Product_{1<=j<=3, gcd(j,n+1)=1} j. - Peter Luschny, Oct 01 2012
a(n) = denominator((n+1)/6). - Jon Hearn, Nov 10 2013
a(n) = denominator of 2*(1/(12*n)+1)*n^n; related to gamma function approximation for positive integers less the factor sqrt(Pi/2)/(exp(n)*sqrt(n)). - Thomas Blankenhorn, Jun 21 2018
a(n) = 6/gcd(n+1,6). - Ridouane Oudra, Jul 29 2022