cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129204 The denominator of 2/n^3.

Original entry on oeis.org

1, 1, 4, 27, 32, 125, 108, 343, 256, 729, 500, 1331, 864, 2197, 1372, 3375, 2048, 4913, 2916, 6859, 4000, 9261, 5324, 12167, 6912, 15625, 8788, 19683, 10976, 24389, 13500, 29791, 16384, 35937, 19652, 42875, 23328, 50653, 27436, 59319, 32000
Offset: 0

Views

Author

Paul Barry, Apr 03 2007

Keywords

Comments

Take two consecutive triangular numbers t1 and t2 and create a triangle using (0,0), (t1,t2) and (t2,t1). The area of this triangle will be ((n+1)^3)/2 for t1 = n*(n+1)/2. - J. M. Bergot, May 08 2012
Multiplicative because both A000578 and A040001 are. - Andrew Howroyd, Jul 26 2018

Crossrefs

Programs

  • Magma
    [1] cat [Denominator(2/n^3): n in [1..40]]; // Vincenzo Librandi, Jul 26 2018
  • Mathematica
    Join[{1}, Table[Denominator[2 / n^3], {n, 100}]] (* Vincenzo Librandi, Jul 26 2018 *)
  • PARI
    a(n) = if(n < 1, n==0, lcm(2, n^3)/2) \\ Andrew Howroyd, Jul 25 2018
    

Formula

G.f.: (1+x+23x^2+22x^4+23x^5+x^7+x^8)/(1-x^2)^4.
a(n) = 0^n + n^3*(3/4 - (-1)^n/4).
a(n+1) = A129196(n)*(5/3 + (4/3)*cos(2*Pi*(n+1)/3)).
a(2n) = 4n^3, a(2n+1) = (2n+1)^3.
a(n) = A000578(n) / A040001(n). - Andrew Howroyd, Jul 25 2018
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + 9*zeta(3)/8.
Sum_{n>=0} (-1)^n/a(n) = 1 - 5*zeta(3)/8. (End)
From Peter Bala, Jan 21 2024: (Start)
For n >= 1, a(n) = n*A129194(n) = n*Sum_{d divides n} (-1)^(d+1)*J(2,n/d), where the Jordan totient function J_2(n) = A007434(n). Cf. A309337.
Dirichlet g.f. for sequence without the a(0) term: (1 - 4/2^s)*zeta(s-3). (End)

Extensions

More terms from Vincenzo Librandi, Jul 26 2018