A129204 The denominator of 2/n^3.
1, 1, 4, 27, 32, 125, 108, 343, 256, 729, 500, 1331, 864, 2197, 1372, 3375, 2048, 4913, 2916, 6859, 4000, 9261, 5324, 12167, 6912, 15625, 8788, 19683, 10976, 24389, 13500, 29791, 16384, 35937, 19652, 42875, 23328, 50653, 27436, 59319, 32000
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-6,0,4,0,-1).
Programs
-
Magma
[1] cat [Denominator(2/n^3): n in [1..40]]; // Vincenzo Librandi, Jul 26 2018
-
Mathematica
Join[{1}, Table[Denominator[2 / n^3], {n, 100}]] (* Vincenzo Librandi, Jul 26 2018 *)
-
PARI
a(n) = if(n < 1, n==0, lcm(2, n^3)/2) \\ Andrew Howroyd, Jul 25 2018
Formula
G.f.: (1+x+23x^2+22x^4+23x^5+x^7+x^8)/(1-x^2)^4.
a(n) = 0^n + n^3*(3/4 - (-1)^n/4).
a(n+1) = A129196(n)*(5/3 + (4/3)*cos(2*Pi*(n+1)/3)).
a(2n) = 4n^3, a(2n+1) = (2n+1)^3.
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + 9*zeta(3)/8.
Sum_{n>=0} (-1)^n/a(n) = 1 - 5*zeta(3)/8. (End)
From Peter Bala, Jan 21 2024: (Start)
For n >= 1, a(n) = n*A129194(n) = n*Sum_{d divides n} (-1)^(d+1)*J(2,n/d), where the Jordan totient function J_2(n) = A007434(n). Cf. A309337.
Dirichlet g.f. for sequence without the a(0) term: (1 - 4/2^s)*zeta(s-3). (End)
Extensions
More terms from Vincenzo Librandi, Jul 26 2018
Comments