A129251 Number of distinct prime factors p of n such that p^p is a divisor of n.
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1
Examples
Since 15 = 3^1 * 5^1, a(15) = 0. But 16 = 2^4 is divisible by 2^2, so a(16) = 1. - _Michael B. Porter_, Aug 18 2016
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Horst Alzer and Man Kam Kwong, On Sándor's Inequality for the Riemann Zeta Function, J. Int. Seq. (2023) Vol. 26, Article 23.3.6.
Crossrefs
Programs
-
Mathematica
{0}~Join~Table[Count[FactorInteger[n][[All, 1]], ?(Mod[n, #^#] == 0 &)], {n, 2, 120}] (* _Michael De Vlieger, Oct 30 2019 *)
-
PARI
a(n)=my(s,t,v); forprime(p=2,, v=valuation(n,p); if(v, n/=p^v; if(v>=p, s++), if(p^p>n, return(s)))) \\ Charles R Greathouse IV, Sep 14 2015
-
Scheme
(define (A129251 n) (if (= 1 n) 0 (+ (A129251 (A028234 n)) (if (zero? (modulo n (expt (A020639 n) (A020639 n)))) 1 0)))) ;; Antti Karttunen, Aug 18 2016
-
Scheme
(define (A129251 n) (if (= 1 n) 0 (+ (A129251 (A028234 n)) (if (>= (A067029 n) (A020639 n)) 1 0)))) ;; Antti Karttunen, Aug 18 2016
Formula
a(n) << sqrt(log n)/log log n. - Charles R Greathouse IV, Sep 14 2015
From Antti Karttunen, Aug 18 2016: (Start)
These formulas use Iverson bracket, which gives 1 as its value if the condition given inside [ ] is true and 0 otherwise:
a(n) = Sum_{d|n} [rad(d) = Omega(d)*[omega(d) = 1]], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Feb 09 2022
Additive with a(p^e) = 1 if e >= p, and 0 otherwise. - Amiram Eldar, Nov 07 2022
Extensions
Data section filled up to 120 terms by Antti Karttunen, Aug 18 2016
Comments