cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129251 Number of distinct prime factors p of n such that p^p is a divisor of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 07 2007

Keywords

Comments

Average value is A094289 = 0.28735...; attains record values on A076265, in particular a(A076265(n)) = n.

Examples

			Since 15 = 3^1 * 5^1, a(15) = 0. But 16 = 2^4 is divisible by 2^2, so a(16) = 1. - _Michael B. Porter_, Aug 18 2016
		

Crossrefs

Cf. A048103 (indices of zeros), A100716 (nonzeros).
Differs from A276077 for the first time at n=625, where a(625) = 0, while A276077(625) = 1.

Programs

Formula

a(A048103(n)) = 0, a(A100716(n)) > 0.
a(n) << sqrt(log n)/log log n. - Charles R Greathouse IV, Sep 14 2015
From Antti Karttunen, Aug 18 2016: (Start)
These formulas use Iverson bracket, which gives 1 as its value if the condition given inside [ ] is true and 0 otherwise:
a(1) = 0, for n > 1, a(n) = a(A028234(n)) + [A067029(n) >= A020639(n)].
Or, for n > 1, a(n) = a(A028234(n)) + [0 = n mod (A020639(n)^A020639(n))]. (End)
a(n) = Sum_{d|n} [rad(d) = Omega(d)*[omega(d) = 1]], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Feb 09 2022
Additive with a(p^e) = 1 if e >= p, and 0 otherwise. - Amiram Eldar, Nov 07 2022

Extensions

Data section filled up to 120 terms by Antti Karttunen, Aug 18 2016