cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129252 Smallest prime factor p of n such that p^p is a divisor of n, a(n)=1 if no such factor exists.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 07 2007

Keywords

Examples

			For n = 108 = 2^2 * 3^3, it is 2 that is the smallest prime factor p satisfying p^p | 108, thus a(108) = 2.
		

Crossrefs

Cf. A020639, A048103 (positions of 1's), A008578, A051674, A129251, A359550, A368333, A380528.
Differs from A327936 for the first time at n=108.

Programs

  • Mathematica
    Array[If[IntegerQ@ #, #, 1] &@ First@ SelectFirst[FactorInteger[#], #1 <= #2 & @@ # &] &, 120] (* Michael De Vlieger, Oct 01 2019 *)
  • PARI
    A129252(n) = { my(f = factor(n)); for(k=1, #f~, if(f[k, 2]>=f[k, 1], return(f[k, 1]))); (1); }; \\ Antti Karttunen, Oct 01 2019
    
  • PARI
    A129252(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(p)); if(pp > n, return(1))); }; \\ Antti Karttunen, Feb 09 2025

Formula

a(n) = 1 iff A129251(n) = 0.
a(A048103(n)) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 - 1/p^p) + Sum_{p prime} ((1/p^(p-1)) * Product_{primes q < p} (1-1/q^q)) = 1.30648526015949409005... . - Amiram Eldar, Nov 07 2022

Extensions

Data section extended to a(120) by Antti Karttunen, Oct 01 2019