cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A129251 Number of distinct prime factors p of n such that p^p is a divisor of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 07 2007

Keywords

Comments

Average value is A094289 = 0.28735...; attains record values on A076265, in particular a(A076265(n)) = n.

Examples

			Since 15 = 3^1 * 5^1, a(15) = 0. But 16 = 2^4 is divisible by 2^2, so a(16) = 1. - _Michael B. Porter_, Aug 18 2016
		

Crossrefs

Cf. A048103 (indices of zeros), A100716 (nonzeros).
Differs from A276077 for the first time at n=625, where a(625) = 0, while A276077(625) = 1.

Programs

Formula

a(A048103(n)) = 0, a(A100716(n)) > 0.
a(n) << sqrt(log n)/log log n. - Charles R Greathouse IV, Sep 14 2015
From Antti Karttunen, Aug 18 2016: (Start)
These formulas use Iverson bracket, which gives 1 as its value if the condition given inside [ ] is true and 0 otherwise:
a(1) = 0, for n > 1, a(n) = a(A028234(n)) + [A067029(n) >= A020639(n)].
Or, for n > 1, a(n) = a(A028234(n)) + [0 = n mod (A020639(n)^A020639(n))]. (End)
a(n) = Sum_{d|n} [rad(d) = Omega(d)*[omega(d) = 1]], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Feb 09 2022
Additive with a(p^e) = 1 if e >= p, and 0 otherwise. - Amiram Eldar, Nov 07 2022

Extensions

Data section filled up to 120 terms by Antti Karttunen, Aug 18 2016

A327936 Multiplicative with a(p^e) = p if e >= p, otherwise 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 01 2019

Keywords

Examples

			For n = 12 = 2^2 * 3^1, only prime factor p = 2 satisfies p^p | 12, thus a(12) = 2.
For n = 108 = 2^2 * 3^3, both prime factors p = 2 and p = 3 satisfy p^p | 108, thus a(108) = 2*3 = 6.
		

Crossrefs

Differs from A129252 for the first time at n=108.

Programs

  • Mathematica
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; IntegerQ@ p :> If[e >= p, p, 1]] &, 120] (* Michael De Vlieger, Oct 01 2019 *)
  • PARI
    A327936(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]>=f[k,1])); factorback(f); };

Formula

Multiplicative with a(p^e) = p if e >= p, otherwise 1.
A001221(a(n)) = A129251(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (p-1)/p^p) = 1.3443209052633459342... . - Amiram Eldar, Nov 07 2022

A380528 Smallest prime p such that p^p is a divisor of A380459(n), or 1 if no such factor exists, where A380459(n) = Product_{d|n} A276086(n/d)^A349394(d).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 3, 1, 2, 2, 3, 2, 2, 1, 1, 2, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 2, 1, 1, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 1, 1, 2, 2, 2, 5, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2025

Keywords

Crossrefs

Cf. A129252, A276086, A349394, A380459, A380468 (positions of 1's), A380529 [= a(A005117(n))], A380530 (positions of records).

Programs

  • PARI
    A129252(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(p)); if(pp > n, return(1))); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A349394(n) = { my(p=0, e); if((e=isprimepower(n, &p)), p^(e-1), 0); };
    A380459(n) = { my(m=1); fordiv(n, d, m *= A276086(d)^A349394(n/d)); (m); };
    A380528(n) = A129252(A380459(n));

Formula

a(n) = A129252(A380459(n)).

A380529 Smallest prime p such that p^p is a divisor of A380459(A005117(n)), or 1 if no such factor exists, where A380459(n) = Product_{d|n} A276086(n/d)^A349394(d) and A005117 lists the squarefree numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 3, 1, 2, 3, 2, 1, 1, 2, 1, 5, 1, 3, 1, 2, 1, 2, 2, 3, 1, 1, 1, 2, 3, 1, 2, 3, 1, 1, 1, 2, 5, 1, 3, 1, 2, 1, 2, 1, 2, 2, 3, 2, 1, 1, 3, 1, 2, 3, 1, 1, 3, 2, 1, 5, 2, 3, 2, 1, 2, 1, 2, 3, 1, 2, 1, 1, 3, 1, 2, 3, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 2, 1, 2, 3, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2025

Keywords

Crossrefs

Programs

  • PARI
    for(n=1,oo,if(issquarefree(n),print1(A380528(n),", ")));

Formula

Showing 1-4 of 4 results.