A129296 Number of divisors of n^2 - 1 that are not greater than n.
1, 1, 2, 2, 4, 2, 5, 3, 5, 3, 8, 2, 8, 4, 6, 4, 9, 2, 12, 4, 8, 4, 10, 3, 10, 6, 8, 4, 16, 2, 14, 4, 7, 8, 12, 4, 12, 4, 10, 4, 20, 2, 16, 6, 8, 6, 12, 3, 18, 6, 12, 4, 16, 4, 20, 8, 10, 4, 16, 2, 16, 6, 8, 12, 16, 4, 16, 4, 16, 4, 30, 2, 15, 6, 8, 12, 16, 4, 24, 5, 12, 5, 16, 4, 16, 8, 10, 4, 30, 4
Offset: 1
Keywords
Examples
a(100) = #{1,3,9,11,33,99} = 6.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Adrian W. Dudek, On the number of divisors of n^2-1, Bulletin of the Australian Mathematical Society, Vol. 93, No. 2 (2016), pp. 194-198; arXiv preprint, arXiv:1507.08893 [math.NT], 2015.
Programs
-
Haskell
a129296 n = length [d | d <- [1..n], (n ^ 2 - 1) `mod` d == 0] -- Reinhard Zumkeller, Jan 09 2014
-
Maple
1,seq(numtheory:-tau(n^2-1)/2,n=2..100); # Robert Israel, Aug 03 2015
-
Mathematica
nd[n_]:=Count[Divisors[n^2-1],?(#<=n&)]; Array[nd,100] (* _Harvey P. Dale, Jan 03 2014 *) a[n_] := DivisorSigma[0, n^2 -1]/2; a[1] = 1; Array[a, 100] (* Amiram Eldar, Jun 18 2022 *)
-
PARI
a(n) = if (n==1, 1, sumdiv(n^2-1, d, d<=n)); \\ Michel Marcus, Jan 02 2014
Formula
a(n) = A000005(n^2-1)/2 for n >= 2. - Robert Israel, Aug 03 2015
Comments