cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129339 Main diagonal of triangular array T: T(j,1) = 1 for ((j-1) mod 6) < 3, else 0; T(j,k) = T(j-1,k-1) + T(j,k-1) for 2 <= k <= j.

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 23, 37, 74, 175, 431, 1024, 2291, 4825, 9650, 18571, 34955, 65536, 124511, 242461, 484922, 989527, 2038103, 4194304, 8565755, 17308657, 34617314, 68703187, 135812051, 268435456, 532087943, 1059392917, 2118785834
Offset: 1

Views

Author

Paul Curtz, May 28 2007

Keywords

Examples

			First seven rows of T are
[ 1 ]
[ 1,  2 ]
[ 1,  2,  4 ]
[ 0,  1,  3,  7 ]
[ 0,  0,  1,  4, 11 ]
[ 0,  0,  0,  1,  5, 16 ]
[ 1,  1,  1,  1,  2,  7, 23 ].
		

Crossrefs

Cf. A038504, A131022 (T read by rows), A131023 (first subdiagonal of T), A131024 (row sums of T), A131025 (antidiagonal sums of T). First through sixth column of T are in A088911, A131026, A131027, A131028, A131029, A131030 resp.

Programs

  • Magma
    m:=33; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 6 lt 3 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; [ M[n, n]: n in [1..m] ]; // Klaus Brockhaus, Jun 10 2007
    
  • Magma
    m:=33; S:=[ [1, 1, 1, 0, 0, 0][(n-1) mod 6 + 1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; // Klaus Brockhaus, Jun 17 2007
    
  • Magma
    I:=[1,2,4,7]; [n le 4 select I[n] else 5*Self(n-1)-9*Self(n-2)+6*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 13 2018
  • Mathematica
    a[n_] := 2^(n-2) + 2*3^((n-3)/2)*Sin[n*Pi/6]; a[1]=1; Table[a[n], {n, 1, 33}] (* Jean-François Alcover, Aug 13 2012 *)
    CoefficientList[Series[(1 - x)^3 / ((1 - 2 x) (1 - 3 x + 3 x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 13 2018 *)
  • PARI
    {m=33; v=concat([1, 2, 4, 7], vector(m-4)); for(n=5, m, v[n]=5*v[n-1]-9*v[n-2]+6*v[n-3]); v} \\ Klaus Brockhaus, Jun 10 2007
    

Formula

G.f.: x*(1-x)^3/((1-2*x)*(1-3*x+3*x^2)). [multiplied by x to match the offset by R. J. Mathar, Jul 22 2009]
a(1) = 1, a(2) = 2, a(3) = 4, a(4) = 7; for n > 4, a(n) = 5*a(n-1) - 9*a(n-2) + 6*a(n-3).
Binomial transform of A088911. - Klaus Brockhaus, Jun 17 2007
a(n+1) = A057083(n)/3+2^(n-1), n > 1. - R. J. Mathar, Jul 22 2009

Extensions

Edited and extended by Klaus Brockhaus, Jun 10 2007