cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129362 a(n) = Sum_{k=floor((n+1)/2)..n} J(k+1), J(k) = A001045(k).

Original entry on oeis.org

1, 1, 4, 8, 19, 37, 80, 160, 331, 661, 1344, 2688, 5419, 10837, 21760, 43520, 87211, 174421, 349184, 698368, 1397419, 2794837, 5591040, 11182080, 22366891, 44733781, 89473024, 178946048, 357903019, 715806037
Offset: 0

Views

Author

Paul Barry, Apr 11 2007

Keywords

Crossrefs

Programs

  • Magma
    A001045:= func< n | (2^n - (-1)^n)/3 >;
    [(&+[A001045(n-j+1): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jan 31 2024
    
  • Mathematica
    LinearRecurrence[{1,3,-1,0,-2,-4},{1,1,4,8,19,37},30] (* Harvey P. Dale, Oct 22 2011 *)
  • SageMath
    def A001045(n): return (2^n - (-1)^n)/3
    def A129362(n): return sum(A001045(n-j+1) for j in range(1+(n//2)))
    [A129362(n) for n in range(31)] # G. C. Greubel, Jan 31 2024

Formula

G.f.: (1+2*x^3)/((1-x-2*x^2)*(1-x^2-2*x^4)).
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 2*a(n-5) - 4*a(n-6).
a(n) = Sum_{k=0..n} ( J(k+1) - J((k+1)/2)*(1-(-1)^k)/2 ).
a(n) = Sum_{j=0..floor(n/2)} A001045(n-j+1). - G. C. Greubel, Jan 31 2024