cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A129361 a(n) = Sum_{k=floor((n+1)/2)..n} Fibonacci(k+1).

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 29, 47, 81, 131, 220, 356, 589, 953, 1563, 2529, 4126, 6676, 10857, 17567, 28513, 46135, 74792, 121016, 196041, 317201, 513619, 831053, 1345282, 2176712, 3522981, 5700303, 9224881, 14926171, 24153636, 39081404, 63239221, 102323209
Offset: 0

Views

Author

Paul Barry, Apr 11 2007

Keywords

Examples

			  1 =  1.
  1 =  1.
  1 +  2 =  3.
  2 +  3 =  5.
  2 +  3 +  5 = 10.
  3 +  5 +  8 = 16.
  3 +  5 +  8 + 13 = 29.
  5 +  8 + 13 + 21 = 47.
  5 +  8 + 13 + 21 + 34 =  81.
  8 + 13 + 21 + 34 + 55 = 131.
  8 + 13 + 21 + 34 + 55 +  89 = 220.
		

Crossrefs

Programs

  • Magma
    I:=[1,1,3,5,10,16]; [n le 6 select I[n] else Self(n-1) +2*Self(n-2)-Self(n-3)-Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Mar 01 2014
    
  • Mathematica
    a[n_]:= Sum[Fibonacci@k, {k, Floor[(n + 3)/2], n + 1}]; Array[a, 33, 0] (* Robert G. Wilson v, Mar 15 2011 *)
    Table[Sum[Fibonacci[n - i + 2], {i, Floor[(n + 2)/2]}], {n, 0, 50}] (* Wesley Ivan Hurt, Feb 25 2014 *)
    LinearRecurrence[{1,2,-1,0,-1,-1},{1,1,3,5,10,16},40] (* Harvey P. Dale, Feb 02 2019 *)
  • PARI
    Vec( (1+x)*(1-x+x^2)/((1-x-x^2)*(1-x^2-x^4)) +O(x^66) ) \\ Joerg Arndt, Mar 01 2014
    
  • SageMath
    [sum(fibonacci(n-j+2) for j in range(1,2+(n//2))) for n in range(51)] # G. C. Greubel, Jan 31 2024

Formula

G.f.: (1+x)*(1-x+x^2)/((1-x-x^2)*(1-x^2-x^4)).
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-5) - a(n-6).
a(n) = Sum_{k=0..n} ( F(k+1) - F((k+1)/2)*(1-(-1)^k)/2 ).
a(n) = A000045(n+3) - A103609(n+5). - R. J. Mathar, Mar 15 2011

Extensions

More terms from Vincenzo Librandi, Mar 01 2014

A245489 a(n) = (1^n + (-2)^n + 4^n)/3.

Original entry on oeis.org

1, 1, 7, 19, 91, 331, 1387, 5419, 21931, 87211, 349867, 1397419, 5593771, 22366891, 89483947, 357903019, 1431677611, 5726579371, 22906579627, 91625794219, 366504225451, 1466014804651, 5864063412907, 23456245263019, 93824997829291, 375299957762731
Offset: 0

Views

Author

Michael Somos, Jul 23 2014

Keywords

Examples

			G.f. = 1 + x + 7*x^2 + 19*x^3 + 91*x^4 + 331*x^5 + 1387*x^6 + 5419*x^7 + ...
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> (1 +(-2)^n +4^n)/3); # G. C. Greubel, Sep 21 2019
  • Magma
    [(1^n + (-2)^n + 4^n) / 3 : n in [0..30]]; // Vincenzo Librandi, Jul 25 2014
    
  • Maple
    seq((1 +(-2)^n +4^n)/3, n=0..30); # G. C. Greubel, Sep 21 2019
  • Mathematica
    CoefficientList[Series[(1-2x-2x^2)/((1-x)(1+2x)(1-4x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 25 2014 *)
    LinearRecurrence[{3,6,-8},{1,1,7},30] (* Harvey P. Dale, Dec 04 2018 *)
  • PARI
    {a(n) = (1^n + (-2)^n + 4^n) / 3};
    
  • PARI
    {a(n) = if( n<0, 4^n, 1) * polcoeff( (1 - 2*x - 2*x^2) / ((1 - x) * (1 + 2*x) * (1 - 4*x)) + x * O(x^abs(n)), abs(n))};
    
  • Sage
    [(1 +(-2)^n +4^n)/3 for n in (0..30)] # G. C. Greubel, Sep 21 2019
    

Formula

G.f.: (1 - 2*x - 2*x^2) / ((1 - x) * (1 + 2*x) * (1 - 4*x)).
0 = 8*a(n) - 6*a(n+1) - 3*a(n+2) + a(n+3) for all n in Z.
a(2*n) = A018240(4*n + 3). a(2*n + 1) = A129362(4*n).
a(n) = A001045(3*n)/(3*A001045(n)) for n >= 1. - Peter Bala, Apr 06 2015
E.g.f.: (exp(x) + exp(4*x) + exp(-2*x))/3. - G. C. Greubel, Sep 21 2019
Showing 1-2 of 2 results.