cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227356 Partial sums of A129361.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 112, 193, 324, 544, 900, 1489, 2442, 4005, 6534, 10660, 17336, 28193, 45760, 74273, 120408, 195200, 316216, 512257, 829458, 1343077, 2174130, 3519412, 5696124, 9219105, 14919408, 24144289
Offset: 1

Views

Author

Kival Ngaokrajang, Jul 08 2013

Keywords

Comments

Sum of labeled numbers of boxes arranged as Pyramid type-II with base Fibonacci(n).
Let us call a Pyramid "type-I" when each row starts with the same number as the leftmost base number, and "type-II" when each column has the same number as the base.
The Pyramid arrangements are related to other sequences as follows:
Base Number Type-I Type-II
----------- ------ -------
Natural A002623 A034828
Fibonacci A129696 a(n)
1,0 A008805
See illustration in links.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,1,-3,1,-1,0,1},{1,2,5,10,20,36,65},40] (* Harvey P. Dale, Jun 30 2025 *)

Formula

For n >=2, a(n) = a(n-1) + A129361(n-1).
G.f. -x*(1+x)*(x^2-x+1) / ( (x-1)*(x^2+x-1)*(x^4+x^2-1) ). - Joerg Arndt, Jul 10 2013
a(n) = 2 + A000045(n+4) - A096748(n+6). - R. J. Mathar, Jul 20 2013

A129362 a(n) = Sum_{k=floor((n+1)/2)..n} J(k+1), J(k) = A001045(k).

Original entry on oeis.org

1, 1, 4, 8, 19, 37, 80, 160, 331, 661, 1344, 2688, 5419, 10837, 21760, 43520, 87211, 174421, 349184, 698368, 1397419, 2794837, 5591040, 11182080, 22366891, 44733781, 89473024, 178946048, 357903019, 715806037
Offset: 0

Views

Author

Paul Barry, Apr 11 2007

Keywords

Crossrefs

Programs

  • Magma
    A001045:= func< n | (2^n - (-1)^n)/3 >;
    [(&+[A001045(n-j+1): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jan 31 2024
    
  • Mathematica
    LinearRecurrence[{1,3,-1,0,-2,-4},{1,1,4,8,19,37},30] (* Harvey P. Dale, Oct 22 2011 *)
  • SageMath
    def A001045(n): return (2^n - (-1)^n)/3
    def A129362(n): return sum(A001045(n-j+1) for j in range(1+(n//2)))
    [A129362(n) for n in range(31)] # G. C. Greubel, Jan 31 2024

Formula

G.f.: (1+2*x^3)/((1-x-2*x^2)*(1-x^2-2*x^4)).
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 2*a(n-5) - 4*a(n-6).
a(n) = Sum_{k=0..n} ( J(k+1) - J((k+1)/2)*(1-(-1)^k)/2 ).
a(n) = Sum_{j=0..floor(n/2)} A001045(n-j+1). - G. C. Greubel, Jan 31 2024
Showing 1-2 of 2 results.