cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129371 a(n) = Sum_{k=0..floor(n/2)} (n-k)^2.

Original entry on oeis.org

0, 1, 5, 13, 29, 50, 86, 126, 190, 255, 355, 451, 595, 728, 924, 1100, 1356, 1581, 1905, 2185, 2585, 2926, 3410, 3818, 4394, 4875, 5551, 6111, 6895, 7540, 8440, 9176, 10200, 11033, 12189, 13125, 14421, 15466, 16910, 18070
Offset: 0

Views

Author

Paul Barry, Apr 11 2007

Keywords

Comments

Partial sums of A129370.
Partial row sums of A055461. - G. C. Greubel, Jan 31 2024

Crossrefs

Programs

  • Magma
    [n*(14*n^2+27*n+7)/48 +(-1)^n*Binomial(n,2)/8: n in [0..60]]; // G. C. Greubel, Jan 31 2024
    
  • Mathematica
    Accumulate[Table[n^2-(n-1)^2 (1-(-1)^n)/8,{n,0,50}]] (* Harvey P. Dale, Oct 22 2011 *)
  • SageMath
    [n*(14*n^2+27*n+7)/48 +(-1)^n*binomial(n,2)/8 for n in range(61)] # G. C. Greubel, Jan 31 2024

Formula

G.f.: x*(1+4*x+5*x^2+4*x^3)/((1-x)*(1-x^2)^3).
a(n) = Sum_{k = floor((n+1)/2)..n} k^2.
From R. J. Mathar, Apr 21 2010: (Start)
a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7).
a(n) = 7*n^3/24 + 9*n^2/16 + 7*n/48 + (-1)^n*n*(n-1)/16. (End)