cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A050409 Truncated square pyramid numbers: a(n) = Sum_{k = n..2*n} k^2.

Original entry on oeis.org

0, 5, 29, 86, 190, 355, 595, 924, 1356, 1905, 2585, 3410, 4394, 5551, 6895, 8440, 10200, 12189, 14421, 16910, 19670, 22715, 26059, 29716, 33700, 38025, 42705, 47754, 53186, 59015, 65255, 71920, 79024, 86581, 94605, 103110, 112110, 121619
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999

Keywords

Crossrefs

Cf. A225144. - Bruno Berselli, Jun 06 2013
Cf. A045943: Sum_{k = n..2*n} k.
Cf. A304993: Sum_{k = n..2*n} k*(k+1)/2.

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(14*n+1)/6); # G. C. Greubel, Oct 30 2019
  • Magma
    [&+[k^2: k in [n..2*n]]: n in [0..40]]; // Bruno Berselli, Feb 11 2011
    
  • Magma
    I:=[0, 5, 29, 86]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
    
  • Maple
    seq(add((n+k)^2,k=0..n),n=0..40); # Zerinvary Lajos, Dec 01 2006
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,5,29,86},40] (* Vincenzo Librandi, Jun 22 2012 *)
    Table[(n(n+1)(14n+1))/6,{n,0,40}] (* Harvey P. Dale, Mar 08 2020 *)
  • PARI
    a(n)=sum(k=n,n+n,k^2)
    
  • PARI
    vector(40, n, n*(n-1)*(14*n-13)/6) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [n*(n+1)*(14*n+1)/6 for n in (0..40)] # G. C. Greubel, Oct 30 2019
    

Formula

a(n) = n*(n+1)*(14*n+1)/6.
a(n) = A132121(n,4) for n>3. - Reinhard Zumkeller, Aug 12 2007
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5+9*x)/(1-x)^4.
a(n) = A129371(2*n). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 22 2012
E.g.f.: x*(30 + 57*x + 14*x^2)*exp(x)/6. - G. C. Greubel, Oct 30 2019

A129370 a(n) = n^2 - (n-1)^2*(1 - (-1)^n)/8.

Original entry on oeis.org

0, 1, 4, 8, 16, 21, 36, 40, 64, 65, 100, 96, 144, 133, 196, 176, 256, 225, 324, 280, 400, 341, 484, 408, 576, 481, 676, 560, 784, 645, 900, 736, 1024, 833, 1156, 936, 1296, 1045, 1444, 1160, 1600, 1281, 1764, 1408
Offset: 0

Views

Author

Paul Barry, Apr 11 2007

Keywords

Comments

Partial sums are A129371.

Crossrefs

Cf. A000567 (odd bisection), A016742 (even bisection), A129371.

Programs

  • Magma
    [n^2 -(n-1)^2*(n mod 2)/4: n in [0..60]]; // G. C. Greubel, Jan 31 2024
    
  • Mathematica
    Table[n^2-(n-1)^2 (1-(-1)^n)/8,{n,0,50}] (* Harvey P. Dale, Oct 22 2011 *)
  • PARI
    a(n)=n^2-(n-1)^2*(1-(-1)^n)/8 \\ Charles R Greathouse IV, Sep 28 2015
    
  • SageMath
    [n^2 -(n-1)^2*(n%2)/4 for n in range(61)] # G. C. Greubel, Jan 31 2024

Formula

a(n) = (1/8)*( (7*n^2 + 2*n - 1) + (-1)^n*(n-1)^2 ).
G.f.: x*(1 + 4*x + 5*x^2 + 4*x^3)/(1-x^2)^3.
E.g.f.: (1/4)*( x*(5+4*x)*cosh(x) - (1-4*x-3*x^2)*sinh(x) ). - G. C. Greubel, Jan 31 2024

A055461 Square decrescendo subsequences: triangle T(n,k) = (n-k)^2, n >= 1, 0 <= k < n.

Original entry on oeis.org

1, 4, 1, 9, 4, 1, 16, 9, 4, 1, 25, 16, 9, 4, 1, 36, 25, 16, 9, 4, 1, 49, 36, 25, 16, 9, 4, 1, 64, 49, 36, 25, 16, 9, 4, 1, 81, 64, 49, 36, 25, 16, 9, 4, 1, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 144, 121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1
Offset: 1

Views

Author

Henry Bottomley, Jun 26 2000

Keywords

Examples

			From _Omar E. Pol_, Jan 26 2014: (Start)
Triangle begins:
    1;
    4,  1;
    9,  4,  1;
   16,  9,  4,  1;
   25, 16,  9,  4,  1;
   36, 25, 16,  9,  4,  1;
   49, 36, 25, 16,  9,  4,  1;
   64, 49, 36, 25, 16,  9,  4,  1;
   81, 64, 49, 36, 25, 16,  9,  4,  1;
  100, 81, 64, 49, 36, 25, 16,  9,  4,  1;
  ...
For n = 7 the row sum is 49 + 36 + 25 + 16 + 9 + 4 + 1 = A000330(7) = 140.
The alternating row sum is 49 - 36 + 25 - 16 + 9 - 4 + 1 = A000217(7) = 28.
(End)
		

Crossrefs

Cf. A000217 (alternating row sums), A000330 (row sums).

Programs

  • Magma
    [(n-k)^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Jan 31 2024
    
  • Maple
    for n from 1 to 10 do
      seq((n-k)^2, k=0..n-1)
    od; # Robert Israel, Jan 18 2018
  • Mathematica
    Table[Range[n,1,-1]^2,{n,20}]//Flatten (* Harvey P. Dale, Apr 17 2020 *)
  • SageMath
    flatten([[(n-k)^2 for k in range(n)] for n in range(1,16)]) # G. C. Greubel, Jan 31 2024

Formula

a(n) = A004736(n)^2.
Sum_{k=0..n-1} T(n, k) = A000330(n) (row sums). - Michel Marcus, Dec 31 2012
G.f. as triangle: x*(1+x)/((1-x*y)*(1-x)^3). - Robert Israel, Jan 18 2018
Sum_{k=0..n-1} (-1)^k*T(n, k) = A000217(n) (alternating row sums). - Omar E. Pol, Jan 24 2014
From G. C. Greubel, Jan 31 2024: (Start)
T(2*n-1, n-1) = A000290(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000292(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A194274(n).
Sum_{k=0..floor(n/2)} T(n, k) = A129371(n). (End)
Showing 1-3 of 3 results.