A129378 Row sums of coefficients of Bernoulli twin number polynomials.
1, 1, 4, 20, 116, 744, 5160, 39360, 350784, 3749760, 42940800, 442713600, 4650877440, 109244298240, 2833294464000, -3487131648000, -2166903606067200, 51809012320665600, 6808619561103360000, -131306587205713920000, -26982365129174827008000, 595860034297401409536000
Offset: 0
Keywords
References
Links
- G. C. Greubel, Table of n, a(n) for n = 0..300
Programs
-
Magma
f:= func< n | n le 2 select (-1)^Floor((n+1)/2)/(n+1) else (-1)^n*BernoulliNumber(Floor(n - (1-(-1)^n)/2)) >; A129378:= func< n | n eq 0 select 1 else Factorial(n+1)*(f(n)+1) >; [A129378(n): n in [0..30]]; // G. C. Greubel, Feb 01 2024
-
Mathematica
c[n_?EvenQ] := BernoulliB[n]; c[n_?OddQ] := -BernoulliB[n-1]; c[1] = -1/2; c[2] = -1/3; a[n_] := (n+1)!*(1+c[n]); a[0]=1; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 08 2012, after given formula *)
-
SageMath
def f(n): return (-1)^((n+1)//2)/(n+1) if n<3 else (-1)^n*bernoulli(n-(n%2)) def A129378(n): return 1 if n==0 else factorial(n+1)*(f(n)+1) [A129378(n) for n in range(31)] # G. C. Greubel, Feb 01 2024
Extensions
Edited and extended by R. J. Mathar, Aug 06 2008
Comments