A140333 Triangle T(n,k) with the coefficient [x^k] (n+1)!* C(n,x), in row n, column k, where C(.,.) are the Bernoulli twin number polynomials of A129378.
1, -1, 2, -2, 0, 6, -4, -12, 12, 24, -4, -60, -60, 120, 120, 24, -120, -720, -240, 1080, 720, 120, 840, -2520, -8400, 0, 10080, 5040, -960, 6720, 20160, -47040, -100800, 20160, 100800, 40320, -12096, -60480, 241920, 423360
Offset: 0
Examples
1; C(0,x) = 1 -1, 2; C(1,x) = -1/2+x -2, 0, 6; C(2,x) = -1/3+x^2 -4, -12, 12, 24; C(3,x) = -1/6 -x/2 +x^2/2 +x^3 -4, -60, -60, 120, 120;
Crossrefs
Cf. A129378.
Programs
-
Maple
C := proc(n,x) if n =0 then 1; else add( binomial(n-1,j-1)*bernoulli(j,x),j=1..n) ; expand(%) ; end if; end proc: A140333 := proc(n,k) (n+1)!*C(n,x) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Jun 27 2011
-
Mathematica
c[0, ] = 1; c[n, x_] := Sum[Binomial[n-1, j-1]*BernoulliB[j, x], {j, 1, n}]; t[n_, k_] := (n+1)!*Coefficient[c[n, x], x, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2013 *)
Comments