cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A140333 Triangle T(n,k) with the coefficient [x^k] (n+1)!* C(n,x), in row n, column k, where C(.,.) are the Bernoulli twin number polynomials of A129378.

Original entry on oeis.org

1, -1, 2, -2, 0, 6, -4, -12, 12, 24, -4, -60, -60, 120, 120, 24, -120, -720, -240, 1080, 720, 120, 840, -2520, -8400, 0, 10080, 5040, -960, 6720, 20160, -47040, -100800, 20160, 100800, 40320, -12096, -60480, 241920, 423360
Offset: 0

Views

Author

Paul Curtz, May 28 2008

Keywords

Comments

The terms at x=0 define the Bernoulli twin numbers, C(n,0)=C(n) = A129826(n)/(n+1)! .
Because the C(n,x) are derived from the Bernoulli polynomials B(n,x) via a binomial transformation and because the odd-indexed Bernoulli numbers are (essentially) zero, the following sum rules for the C(n) emerge (partially in Umbral notation):
For odd C(n): C(2n)=(C-1)^(2n-1), n > 1, C(2n) disappears; example: C(4)=C(4)-3C(3)+3C(2)-C(1).
0r for C(2n+1): (C-1)^2n=0, n >0; example: C(1)-4C(2)+6C(3)-4C(4)+C(5)=0.
With positive coefficients, table
1, 2;
2, 2, 3;
3, 2, 3, 6;
4, 2, 3, 6, 30;
5, 2, 3, 6, 30, -30;
6, 2, 3, 6, 30, -30, -42;
gives C(n). Example: 3C(0)+2C(1)+3C(2)+6C(3)=0. See -A051717(n+1), Bernoulli twin numbers denominators, with from 30 opposite twin.

Examples

			1;    C(0,x) = 1
-1, 2;    C(1,x) = -1/2+x
-2, 0, 6;       C(2,x) = -1/3+x^2
-4, -12, 12, 24;      C(3,x) = -1/6 -x/2 +x^2/2 +x^3
-4, -60, -60, 120, 120;
		

Crossrefs

Cf. A129378.

Programs

  • Maple
    C := proc(n,x) if n =0 then 1; else add( binomial(n-1,j-1)*bernoulli(j,x),j=1..n) ; expand(%) ; end if; end proc:
    A140333 := proc(n,k) (n+1)!*C(n,x) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Jun 27 2011
  • Mathematica
    c[0, ] = 1; c[n, x_] := Sum[Binomial[n-1, j-1]*BernoulliB[j, x], {j, 1, n}]; t[n_, k_] := (n+1)!*Coefficient[c[n, x], x, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2013 *)

A129826 Transformed Bernoulli twin numbers.

Original entry on oeis.org

1, -1, -2, -4, -4, 24, 120, -960, -12096, 120960, 3024000, -36288000, -1576143360, 22066007040, 1525620096000, -24409921536000, -2522591034163200, 45406638614937600, 6686974460694528000, -133739489213890560000, -27033456071346536448000, 594736033569623801856000
Offset: 0

Views

Author

Paul Curtz, May 20 2007

Keywords

Crossrefs

Programs

  • Magma
    f:= func< n | n le 2 select (-1)^Floor((n+1)/2)/(n+1) else (-1)^n*BernoulliNumber(Floor(n - (1-(-1)^n)/2)) >;
    A129826:= func< n | Factorial(n+1)*f(n) >;
    [A129826(n): n in [0..30]]; // G. C. Greubel, Feb 01 2024
    
  • Mathematica
    c[n_?EvenQ] := BernoulliB[n]; c[n_?OddQ] := -BernoulliB[n-1]; c[1]=-1/2; c[2]=-1/3; a[n_] := (n+1)!*c[n]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 08 2012 *)
  • SageMath
    def f(n): return (-1)^((n+1)//2)/(n+1) if n<3 else (-1)^n*bernoulli(n-(n%2))
    def A129826(n): return factorial(n+1)*f(n)
    [A129826(n) for n in range(31)] # G. C. Greubel, Feb 01 2024

Formula

We define Bernoulli twin numbers C(n) via Bernoulli numbers B(n) = A027641(n)/A027642(n) as C(0)=1, 2C(1)=-1, 3C(2)=-1, C(2n-1)= -B(2n-2) and C(2n)=B(2n), n>1. The sequence is defined as a(n)=(n+1)!*C(n).
a(n) = (n+1)!*C(n), where C(n) = A051718(n)/A051717(n).
E.g.f.: Sum(n>=0) C(n) x^n/n! = 1 + x - x^2/2 + Sum_{n>=1} (B(n) - B(n-1))*x^n/n! = x - x^2/2 + x/(e^x-1) - Integral_{y=0..x} ((y dy)/(e^y-1)).

Extensions

Edited and extended by R. J. Mathar, Aug 06 2008

A140351 Numerator of the coefficient [x^1] of the Bernoulli twin number polynomial C(n,x).

Original entry on oeis.org

1, 0, -1, -1, -1, 1, 1, -1, -3, 3, 5, -5, -691, 691, 35, -35, -3617, 3617, 43867, -43867, -1222277, 1222277, 854513, -854513, -1181820455, 1181820455, 76977927, -76977927, -23749461029, 23749461029, 8615841276005, -8615841276005, -84802531453387, 84802531453387
Offset: 1

Views

Author

Paul Curtz, May 30 2008, Jun 23 2008

Keywords

Comments

The Bernoulli twin number polynomials C(n,x) are defined in A129378.

Examples

			The coefficients [x^m]C(n,x) are a table of fractions:
1 ;
-1/2, 1;
-1/3, 0, 1;
-1/6, -1/2, 1/2, 1;
-1/30,-1/2, -1/2, 1, 1;
1/30, -1/6, -1,-1/3, 3/2, 1;
1/42, 1/6, -1/2, -5/3, 0, 2, 1;
-1/42, 1/6, 1/2, -7/6, -5/2, 1/2, 5/2, 1;
-1/30, -1/6, 2/3, 7/6, -7/3, -7/2, 7/6, 3, 1;
1/30, -3/10, -2/3, 2, 7/3, -21/5, -14/3, 2, 7/2, 1;
5/66, 3/10, -3/2, -2, 5, 21/5, -7, -6, 3, 4, 1; ...
This sequence here contains the numerators of the second column.
		

Crossrefs

Programs

  • Maple
    C := proc(n,x) if n = 0 then 1; else add(binomial(n-1,j-1)* bernoulli(j,x),j=1..n) ; expand(%) ; end if ; end proc:
    A140351 := proc(n) coeff(C(n,x),x,1) ; numer(%) ; end proc: seq(A140351(n),n=1..80) ; # R. J. Mathar, Nov 22 2009
  • Mathematica
    b[n_, x_] := Coefficient[ Series[ t*E^(x*t)/(E^t - 1), {t, 0, n}], t, n]*n!; c[n_, x_] := Sum[ Binomial[n-1, j-1]*b[j, x], {j, 1, n}]; t[n_, m_] := Coefficient[c[n, x], x, m]; Table[t[n, 1] // Numerator, {n, 1, 34} ] (* Jean-François Alcover, Mar 04 2013 *)
    Table[Sum[Binomial[n, k]*(k+1)*BernoulliB[k], {k, 0, n}], {n, 0, 30}] // Numerator (* Vaclav Kotesovec, Oct 05 2016 *)
  • Maxima
    makelist(num(sum((binomial(n,i)*(i+1)*bern(i)),i,0,n)),n,0,20); /* Vladimir Kruchinin, Oct 05 2016 */
    
  • PARI
    a(n) = numerator(sum(i=0, n, binomial(n,i)*(i+1)*bernfrac(i))); \\ Michel Marcus, Oct 05 2016

Formula

a(n) = numerator(Sum_{i=0..n} binomial(n,i)*(i+1)*bernoulli(i)). - Vladimir Kruchinin, Oct 05 2016

Extensions

Edited and extended by R. J. Mathar, Nov 22 2009

A140334 Triangle read by rows: nonnegative numerators of Bernoulli twin polynomial coefficients on line.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 0, 2, 1, 1, 1, 1, 7, 5, 1, 5, 1, 1, 1, 2, 7, 7, 7, 7, 3, 1, 1, 3, 2, 2, 7, 21, 14, 2, 7, 1, 5, 3, 3, 2, 5, 21, 7, 6, 3, 4, 1
Offset: 0

Views

Author

Paul Curtz, May 28 2008

Keywords

Programs

  • Mathematica
    c[0, x_] = 1; c[n_, x_] := Sum[Binomial[n-1, j-1]*BernoulliB[j, x], {j, 1, n}]; Table[CoefficientList[c[n, x], x], {n, 0, 10}] // Flatten // Abs // Numerator (* Jean-François Alcover, Sep 12 2013 *)

Formula

First five increasing polynomials:
1;
-1/2, 1;
-1/3, 0, 1;
-1/6, -1/2, 1/2, 1;
-1/30, -1/2, -1/2, 1, 1;
...

Extensions

More terms from Jean-François Alcover, Sep 12 2013

A140352 Denominators of Bernoulli twin numbers polynomial coefficients.

Original entry on oeis.org

1, -2, 1, -3, 1, -6, -2, 2, 1, -30, -2, -2, 1, 1, 30, -6, -1, -3, 2, 1, 42, 6, -2, -3, 1, 1, -42, 6, 2, -6, -2, 2, 2, 1, -30, -6, 3, 6, -3, -2, 6, 1, 1, 30, -10, -3, 1, 3, -5, -3, 1, 2, 1, 66, 10, -2, -1, 1, 5, -1, -1, 1, 1, 1
Offset: 0

Views

Author

Paul Curtz, May 30 2008

Keywords

Comments

See numerators A140334, when numerator is 0, no entry is entered here.

Examples

			Triangle starts:
1;
-2, 1;
-3, 1;
-6, -2, 2, 1;
		

Crossrefs

Programs

  • Mathematica
    c[0, x_] = 1; c[n_, x_] := Sum[Binomial[n-1, j-1] BernoulliB[j, x], {j, 1, n}]; Table[CoefficientList[c[n, x], x], {n, 0, 10}] // Flatten // Select[#, # != 0 &]& // Sign[#]*Denominator[#]& (* Jean-François Alcover, Sep 12 2013 *)
Showing 1-5 of 5 results.