A051717
1, followed by denominators of first differences of Bernoulli numbers (B(i)-B(i-1)).
Original entry on oeis.org
1, 2, 3, 6, 30, 30, 42, 42, 30, 30, 66, 66, 2730, 2730, 6, 6, 510, 510, 798, 798, 330, 330, 138, 138, 2730, 2730, 6, 6, 870, 870, 14322, 14322, 510, 510, 6, 6, 1919190, 1919190, 6, 6, 13530, 13530, 1806, 1806, 690, 690, 282, 282, 46410, 46410, 66, 66, 1590, 1590
Offset: 0
Bernoulli numbers: 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
First differences: -3/2, 2/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, ...
Numerators: -3, 2, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, ...
Denominators: 2, 3, 6, 30, 30, 42, 42, 30, 30, 66, 66, 2730, ...
Sequence of C(n)'s begins: 1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, -691/2730, 691/2730, 7/6, -7/6, ...
-
f:= func< n | Bernoulli(n) + Bernoulli(n-1) >;
function A051717(n)
if n eq 0 then return 1;
elif (n mod 2) eq 0 then return Denominator(f(n));
else return Denominator(-f(n));
end if;
end function;
[A051717(n): n in [0..50]]; // G. C. Greubel, Apr 22 2023
-
C:=proc(n) if n=0 then RETURN(1); fi; if n mod 2 = 0 then RETURN(bernoulli(n)+bernoulli(n-1)); else RETURN(-bernoulli(n)-bernoulli(n-1)); fi; end;
-
c[0]= 1; c[n_?EvenQ]:= BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ]:= -BernoulliB[n] - BernoulliB[n-1]; Table[Denominator[c[n]], {n,0,53}] (* Jean-François Alcover, Dec 19 2011 *)
Join[{1},Denominator[Total/@Partition[BernoulliB[Range[0,60]],2,1]]] (* Harvey P. Dale, Mar 09 2013 *)
Join[{1},Denominator[Differences[BernoulliB[Range[0,60]]]]] (* Harvey P. Dale, Jun 28 2021 *)
-
a(n)=if(n<3,n+1,denominator(bernfrac(n)-bernfrac(n-1))) \\ Charles R Greathouse IV, May 18 2015
-
def f(n): return bernoulli(n)+bernoulli(n-1)
def A051717(n):
if (n==0): return 1
elif (n%2==0): return denominator(f(n))
else: return denominator(-f(n))
[A051717(n) for n in range(51)] # G. C. Greubel, Apr 22 2023
A051716
Numerators of Bernoulli twin numbers C(n).
Original entry on oeis.org
1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, -7, -3617, 3617, 43867, -43867, -174611, 174611, 854513, -854513, -236364091, 236364091, 8553103, -8553103, -23749461029, 23749461029, 8615841276005, -8615841276005, -7709321041217, 7709321041217, 2577687858367
Offset: 0
The C(n) sequence is 1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, -691/2730, 691/2730, 7/6, -7/6, ...
-
f:= func< n | Bernoulli(n) + Bernoulli(n-1) >;
function A051716(n)
if n eq 0 then return 1;
elif (n mod 2) eq 0 then return Numerator(f(n));
else return Numerator(-f(n));
end if;
end function;
[A051716(n): n in [0..50]]; // G. C. Greubel, Apr 22 2023
-
C:=proc(n) if n=0 then RETURN(1); fi; if n mod 2 = 0 then RETURN(bernoulli(n)+bernoulli(n-1)); else RETURN(-bernoulli(n)-bernoulli(n-1)); fi; end;
-
c[0]= 1; c[n_?EvenQ]:= BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ]:= -BernoulliB[n] - BernoulliB[n-1]; Table[Numerator[c[n]], {n,0,34}] (* Jean-François Alcover, Dec 19 2011 *)
-
a(n) = if (n==0, 1, nu = numerator(bernfrac(n)+bernfrac(n-1)); if (n%2, -nu, nu)); \\ Michel Marcus, Jan 29 2017
-
def f(n): return bernoulli(n)+bernoulli(n-1)
def A051716(n):
if (n==0): return 1
elif (n%2==0): return numerator(f(n))
else: return numerator(-f(n))
[A051716(n) for n in range(51)] # G. C. Greubel, Apr 22 2023
A129825
a(n) = n!*Bernoulli(n-1), n > 2; a(0)=0, a(1)=1, a(2)=1.
Original entry on oeis.org
0, 1, 1, 1, 0, -4, 0, 120, 0, -12096, 0, 3024000, 0, -1576143360, 0, 1525620096000, 0, -2522591034163200, 0, 6686974460694528000, 0, -27033456071346536448000, 0, 160078872315904478576640000, 0, -1342964491649083924630732800000, 0, 15522270327163593186886877184000000, 0
Offset: 0
Equals second left hand column of
A161739 (RSEG2 triangle).
Cf.
A094310 [T(n,k) = n!/k],
A008277 [S2(n,k); Stirling numbers of the second kind],
A028246 [Worpitzky's triangle] and
A008955 [CFN triangle].
-
[n le 2 select Floor((n+1)/2) else Factorial(n)*Bernoulli(n-1): n in [0..40]]; // G. C. Greubel, Apr 26 2024
-
A129825 := proc(n) if n <= 1 then n; elif n = 2 then 1; else n!*bernoulli(n-1) ; fi; end: # R. J. Mathar, May 21 2009
-
a[n_] := n!*BernoulliB[n-1]; a[0]=0; a[2]=1; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Mar 04 2013 *)
-
[(n+1)//2 if n <3 else factorial(n)*bernoulli(n-1) for n in range(41)] # G. C. Greubel, Apr 26 2024
A129378
Row sums of coefficients of Bernoulli twin number polynomials.
Original entry on oeis.org
1, 1, 4, 20, 116, 744, 5160, 39360, 350784, 3749760, 42940800, 442713600, 4650877440, 109244298240, 2833294464000, -3487131648000, -2166903606067200, 51809012320665600, 6808619561103360000, -131306587205713920000, -26982365129174827008000, 595860034297401409536000
Offset: 0
- P. Curtz, Integration numerique ..., Note no. 12 CCSA (later CELAR), 1969. (See A129841, A129696.)
- P. Curtz, Gazette des Mathematiciens, 1992, no. 52, p. 44.
-
f:= func< n | n le 2 select (-1)^Floor((n+1)/2)/(n+1) else (-1)^n*BernoulliNumber(Floor(n - (1-(-1)^n)/2)) >;
A129378:= func< n | n eq 0 select 1 else Factorial(n+1)*(f(n)+1) >;
[A129378(n): n in [0..30]]; // G. C. Greubel, Feb 01 2024
-
c[n_?EvenQ] := BernoulliB[n]; c[n_?OddQ] := -BernoulliB[n-1]; c[1] = -1/2; c[2] = -1/3; a[n_] := (n+1)!*(1+c[n]); a[0]=1; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 08 2012, after given formula *)
-
def f(n): return (-1)^((n+1)//2)/(n+1) if n<3 else (-1)^n*bernoulli(n-(n%2))
def A129378(n): return 1 if n==0 else factorial(n+1)*(f(n)+1)
[A129378(n) for n in range(31)] # G. C. Greubel, Feb 01 2024
A140351
Numerator of the coefficient [x^1] of the Bernoulli twin number polynomial C(n,x).
Original entry on oeis.org
1, 0, -1, -1, -1, 1, 1, -1, -3, 3, 5, -5, -691, 691, 35, -35, -3617, 3617, 43867, -43867, -1222277, 1222277, 854513, -854513, -1181820455, 1181820455, 76977927, -76977927, -23749461029, 23749461029, 8615841276005, -8615841276005, -84802531453387, 84802531453387
Offset: 1
The coefficients [x^m]C(n,x) are a table of fractions:
1 ;
-1/2, 1;
-1/3, 0, 1;
-1/6, -1/2, 1/2, 1;
-1/30,-1/2, -1/2, 1, 1;
1/30, -1/6, -1,-1/3, 3/2, 1;
1/42, 1/6, -1/2, -5/3, 0, 2, 1;
-1/42, 1/6, 1/2, -7/6, -5/2, 1/2, 5/2, 1;
-1/30, -1/6, 2/3, 7/6, -7/3, -7/2, 7/6, 3, 1;
1/30, -3/10, -2/3, 2, 7/3, -21/5, -14/3, 2, 7/2, 1;
5/66, 3/10, -3/2, -2, 5, 21/5, -7, -6, 3, 4, 1; ...
This sequence here contains the numerators of the second column.
-
C := proc(n,x) if n = 0 then 1; else add(binomial(n-1,j-1)* bernoulli(j,x),j=1..n) ; expand(%) ; end if ; end proc:
A140351 := proc(n) coeff(C(n,x),x,1) ; numer(%) ; end proc: seq(A140351(n),n=1..80) ; # R. J. Mathar, Nov 22 2009
-
b[n_, x_] := Coefficient[ Series[ t*E^(x*t)/(E^t - 1), {t, 0, n}], t, n]*n!; c[n_, x_] := Sum[ Binomial[n-1, j-1]*b[j, x], {j, 1, n}]; t[n_, m_] := Coefficient[c[n, x], x, m]; Table[t[n, 1] // Numerator, {n, 1, 34} ] (* Jean-François Alcover, Mar 04 2013 *)
Table[Sum[Binomial[n, k]*(k+1)*BernoulliB[k], {k, 0, n}], {n, 0, 30}] // Numerator (* Vaclav Kotesovec, Oct 05 2016 *)
-
makelist(num(sum((binomial(n,i)*(i+1)*bern(i)),i,0,n)),n,0,20); /* Vladimir Kruchinin, Oct 05 2016 */
-
a(n) = numerator(sum(i=0, n, binomial(n,i)*(i+1)*bernfrac(i))); \\ Michel Marcus, Oct 05 2016
A129724
a(0) = 1; then a(n) = n!*(1 - (-1)^n*Bernoulli(n-1)).
Original entry on oeis.org
1, 2, 3, 7, 24, 116, 720, 5160, 40320, 350784, 3628800, 42940800, 479001600, 4650877440, 87178291200, 2833294464000, 20922789888000, -2166903606067200, 6402373705728000, 6808619561103360000, 2432902008176640000, -26982365129174827008000, 1124000727777607680000
Offset: 0
-
Concatenation([1], List([1..25], n-> Factorial(n)*(1 - (-1)^n*Bernoulli(n-1)) )); # G. C. Greubel, Dec 03 2019
-
[n eq 0 select 1 else Factorial(n)*(1 - (-1)^n*Bernoulli(n-1)): n in [0..25]]; // G. C. Greubel, Dec 03 2019
-
a:= proc(n)
if n=0 and n>=0 then 1
elif n mod 2 = 0 then n!*(1 - bernoulli(n-1))
else n!*(1 + bernoulli(n-1))
fi; end;
seq(a(n), n=0..25); # modified by G. C. Greubel, Dec 03 2019
-
a[0] = 1; a[n_]:= n!*(1-(-1)^n*BernoulliB[n-1]); Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Sep 16 2013 *)
-
a(n) = if(n==0, 1, n!*(1 - (-1)^n*bernfrac(n-1)) ); \\ G. C. Greubel, Dec 03 2019
-
[1]+[factorial(n)*(1 - (-1)^n*bernoulli(n-1)) for n in (1..25)] # G. C. Greubel, Dec 03 2019
A140333
Triangle T(n,k) with the coefficient [x^k] (n+1)!* C(n,x), in row n, column k, where C(.,.) are the Bernoulli twin number polynomials of A129378.
Original entry on oeis.org
1, -1, 2, -2, 0, 6, -4, -12, 12, 24, -4, -60, -60, 120, 120, 24, -120, -720, -240, 1080, 720, 120, 840, -2520, -8400, 0, 10080, 5040, -960, 6720, 20160, -47040, -100800, 20160, 100800, 40320, -12096, -60480, 241920, 423360
Offset: 0
1; C(0,x) = 1
-1, 2; C(1,x) = -1/2+x
-2, 0, 6; C(2,x) = -1/3+x^2
-4, -12, 12, 24; C(3,x) = -1/6 -x/2 +x^2/2 +x^3
-4, -60, -60, 120, 120;
-
C := proc(n,x) if n =0 then 1; else add( binomial(n-1,j-1)*bernoulli(j,x),j=1..n) ; expand(%) ; end if; end proc:
A140333 := proc(n,k) (n+1)!*C(n,x) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Jun 27 2011
-
c[0, ] = 1; c[n, x_] := Sum[Binomial[n-1, j-1]*BernoulliB[j, x], {j, 1, n}]; t[n_, k_] := (n+1)!*Coefficient[c[n, x], x, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2013 *)
Original entry on oeis.org
3, 9, 60, 84, 60, 132, 5460, 12, 1020, 1596, 660, 276, 5460, 12, 1740, 28644, 1020, 12, 3838380, 12, 27060, 3612, 1380, 564, 92820, 132, 3180, 1596, 1740, 708, 113573460, 12, 1020, 129444, 60, 9372, 280201740, 12, 60, 6636, 460020, 996, 6808620, 12, 122820
Offset: 0
-
C:=proc(n) if n=0 then RETURN(1); fi; if n mod 2 = 0 then RETURN(bernoulli(n)+bernoulli(n-1)); else RETURN(-bernoulli(n)-bernoulli(n-1)); fi; end:
A051717 := proc(n) denom(C(n)) ; end: A140812 := proc(n) A051717(2*n)+A051717(2*n+1) ; end: seq(A140812(n),n=0..80) ; # R. J. Mathar, Jun 28 2009
-
A051717 := Join[{1}, Denominator[Total /@ Partition[BernoulliB[Range[0, 500]], 2, 1]]]; Join[{3, 9}, Table[2*A051717[[2*n]], {n, 3,30}]] (* G. C. Greubel, Dec 22 2017 *)
A140334
Triangle read by rows: nonnegative numerators of Bernoulli twin polynomial coefficients on line.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 0, 2, 1, 1, 1, 1, 7, 5, 1, 5, 1, 1, 1, 2, 7, 7, 7, 7, 3, 1, 1, 3, 2, 2, 7, 21, 14, 2, 7, 1, 5, 3, 3, 2, 5, 21, 7, 6, 3, 4, 1
Offset: 0
-
c[0, x_] = 1; c[n_, x_] := Sum[Binomial[n-1, j-1]*BernoulliB[j, x], {j, 1, n}]; Table[CoefficientList[c[n, x], x], {n, 0, 10}] // Flatten // Abs // Numerator (* Jean-François Alcover, Sep 12 2013 *)
Showing 1-9 of 9 results.
Comments