A129427 Number of isomorphism classes of 3-regular multigraphs of order 2n, loops allowed.
1, 2, 8, 31, 140, 722, 4439, 32654, 289519, 3054067, 37584620, 527968286, 8308434931, 144345554051, 2738280739075, 56245013793246, 1242596591479816, 29366532494796900, 739033832149588904, 19726887762569763453
Offset: 0
Keywords
References
- P. A. Morris, Letter to N. J. A. Sloane, Mar 02 1971.
Links
- R. de Mello Koch, S. Ramgoolam, Strings from Feynman graph counting: Without large N, Phys. Rev. D 85 (2012) 026007
- P. A. Morris, Letter to N. J. A. Sloane, Mar 02 1971.
- R. C. Read, The enumeration of locally restricted graphs (I), J. London Math. Soc. 34 (1959) 417-436. - _Jason Kimberley_, Sep 17 2009
Crossrefs
Programs
-
Sage
h = SymmetricFunctions(QQ).homogeneous() def A129427(n): X = h([2*n]).plethysm(h([3])) Y = h([3*n]).plethysm(h([2])) return X.scalar(Y) # Bruce Westbury, Aug 16 2013
Formula
a(n)=N\{S_{2n}[S_3] * S_{3n}[S_2]\}. - Jason Kimberley, Sep 17 2009
Extensions
Using equation (5.8) of Read 1959, new terms a(12) and a(13) were computed in MAGMA by Jason Kimberley, Sep 17 2009
Further terms a(14)-a(16) also computed by Jason Kimberley, announced Nov 09 2009
Formula corrected from n vertices to 2n vertices by Jason Kimberley, Nov 09 2009
Added a(0). - N. J. A. Sloane, Aug 26 2013
a(17)-a(19) from Sean A. Irvine, Oct 29 2016
Comments