cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129476 a(n) is the concatenation in increasing order of all single-digit divisors of n.

Original entry on oeis.org

1, 12, 13, 124, 15, 1236, 17, 1248, 139, 125, 1, 12346, 1, 127, 135, 1248, 1, 12369, 1, 1245, 137, 12, 1, 123468, 15, 12, 139, 1247, 1, 12356, 1, 1248, 13, 12, 157, 123469, 1, 12, 13, 12458, 1, 12367, 1, 124, 1359, 12, 1, 123468, 17, 125
Offset: 1

Views

Author

Colin Pitrat (colin.pitrat(AT)rez-gif.supelec.fr), May 29 2007

Keywords

Comments

Sequence has period 2520 = 2^3 * 3^2 * 5 * 7.
a(n) = 1 iff n is a 11-rough number: not divisible by 2, 3, 5 or 7 (A008364). - Bernard Schott_, Dec 31 2020

Examples

			a(10)=125 because 1, 2 and 5 divides 10. 10 also divides 10 but it is not a digit so it doesn't appear.
a(2520) = 123456789. - Bernard Schott_, Dec 31 2020
		

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(seq(`if`(irem(n, i)=0, i, [][]), i=1..9))):
    seq(a(n), n=1..50);  # Alois P. Heinz, Dec 31 2020
  • Mathematica
    Table[FromDigits[Select[Divisors[n],#<10&]],{n,50}] (* Harvey P. Dale, Jun 07 2015 *)
  • PARI
    a(n) = fromdigits(select(x->(x<10), divisors(n))); \\ Michel Marcus, Dec 31 2020
    
  • Python
    def a(n): return int('1'+"".join(d for d in "23456789" if n%int(d) == 0))
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Dec 31 2020

Formula

Let n be the rank and result be the number for this rank let a1...ak be k digits (a1...ak in [0,9]) result=a1*10^(k-1)...ak*10^0 with (i|n) => i in {a1...ak}.

Extensions

Editing and comment from Charles R Greathouse IV, Nov 02 2009
More terms from Harvey P. Dale, Jun 07 2015
Name edited by Joerg Arndt, Jan 01 2021