cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A129510 Number of distinct differences between pairs of distinct divisors of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 6, 3, 6, 1, 10, 1, 6, 5, 10, 1, 13, 1, 13, 6, 6, 1, 18, 3, 6, 6, 14, 1, 19, 1, 15, 6, 6, 6, 24, 1, 6, 6, 22, 1, 23, 1, 15, 12, 6, 1, 30, 3, 15, 6, 15, 1, 25, 6, 23, 6, 6, 1, 37, 1, 6, 13, 21, 6, 25, 1, 15, 6, 24, 1, 40, 1, 6, 13, 15, 6, 26, 1, 34, 10, 6, 1, 45, 6, 6, 6, 26
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 19 2007

Keywords

Comments

a(n) = #{|x-y|: x <> y and n mod x = n mod y = 0};
a(n) = 1 iff n is prime;
a(n) <= A000217(A000005(a(n))-1) = A066446(n):
a(A129511(n))=A066446(A129511(n)), a(A129512(n)) < A066446(A129512(n)).

Examples

			n=44, set of divisors of 44 = {1,2,4,11,22,44}:
44-22=22, 44-11=33, 44-4=40, 44-2=42, 44-1=41,
22-11=11, 22-4=18, 22-2=20, 22-1=21,
11-4=7, 11-2=9, 11-1=10, 4-2=2, 4-1=3, 2-1=1,
a(44) = #{1,2,3,7,9,10,11,18,20,21,22,33,40,41,42} = 15;
n=45, set of divisors of 45 = {1,3,5,9,15,45}:
45-15=30, 45-9=36, 45-5=40, 45-3=42, 45-1=44,
15-9=6, 15-5=10, 15-3=12, 15-1=14,
9-5=4, 9-3=6, 9-1=8, 5-3=2, 5-1=4, 3-1=2,
a(45) = #{2,4,6,8,10,12,14,30,36,40,42,44} = 12.
		

Crossrefs

Cf. A000005.

Programs

  • Mathematica
    a[n_]:=Length[Union[Flatten[Differences/@Subsets[Divisors[n],{2}]]]];Table[a[n],{n,88}] (* James C. McMahon, Jan 21 2025 *)
  • PARI
    a(n)=my(d=divisors(n),v=List()); for(i=1,#d-1,for(j=i+1,#d, listput(v,d[j]-d[i]))); #Set(v) \\ Charles R Greathouse IV, Aug 26 2015

A129511 Numbers such that all differences between distinct divisors occur exactly once.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 83, 85, 86, 87, 89, 92, 93, 94, 95, 97, 98, 101, 103
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 19 2007

Keywords

Comments

A129510(a(n)) = A066446(a(n)).
a(n) = A174905(n) for n<27, A174905(27)=37 whereas a(27)=35. - Reinhard Zumkeller, Apr 01 2010

Examples

			See example for a(33)=44 in A129510.
		

Crossrefs

Cf. A027750, A066446, A129510, A129512 (complement), A174905.

Programs

  • Haskell
    import Data.List.Ordered (isect, union)
    a129511 n = a129511_list !! (n-1)
    a129511_list = filter (f [] . a027750_row') [1..] where
       f  [] = True
       f zs (d:ds) = null (dds `isect` zs) && f (dds `union` zs) ds
                     where dds = map (subtract d) ds
    -- Reinhard Zumkeller, Jun 25 2015
  • Mathematica
    Select[Range[103],CountDistinct[Differences /@ Subsets[Divisors[#], {2}]]==Length[Flatten[Differences /@ Subsets[Divisors[#], {2}]]]&] (* James C. McMahon, Jan 21 2025 *)

A259366 Numbers for which the differences between consecutive divisors (ordered by size) are not distinct.

Original entry on oeis.org

6, 12, 15, 18, 20, 24, 30, 36, 40, 42, 45, 48, 54, 56, 60, 63, 66, 70, 72, 75, 78, 80, 84, 90, 91, 96, 99, 100, 102, 105, 108, 110, 112, 114, 120, 126, 130, 132, 135, 138, 140, 144, 150, 156, 160, 162, 165, 168, 174, 180, 182, 186, 189, 192, 195, 198, 200
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 25 2015

Keywords

Examples

			.    n |  A193829(n,*)      |  A027750(n,*)         |
.  ----+--------------------+-----------------------+------------
.   10 |  {1,3,5}           |  {1,2,5,10}           |
.   11 |  {10}              |  {1,11}               |
.   12 |  {1,1,1,2,6}       |  {1,2,3,4,6,12}       |  a(2) = 12
.   13 |  {12}              |  {1,13}               |
.   14 |  {1,5,7}           |  {1,2,7,14}           |
.   15 |  {2,2,10}          |  {1,3,5,15}           |  a(3) = 15
.   16 |  {1,2,4,8}         |  {1,2,4,8,16}         |
.   17 |  {16}              |  {1,17}               |
.   18 |  {1,1,3,3,9}       |  {1,2,3,6,9,18}       |  a(4) = 18
.   19 |  {18}              |  {1,19}               |
.   20 |  {1,2,1,5,10}      |  {1,2,4,5,10,20}      |  a(5) = 20
.   21 |  {2,4,14}          |  {1,3,7,21}           |
.   22 |  {1,9,11}          |  {1,2,11,22}          |
.   23 |  {22}              |  {1,23}               |
.   24 |  {1,1,1,2,2,4,12}  |  {1,2,3,4,6,8,12,24}  |  a(6) = 24
.   25 |  {4,20}            |  {1,5,25}             |            .
		

Crossrefs

Cf. A193829, A027750, A060682, A000005, A060683 (complement), subsequence of A129512.

Programs

  • Haskell
    a259366 n = a259366_list !! (n-1)
    a259366_list = filter (\x -> a060682 x < a000005' x - 1) [2..]
  • Mathematica
    q[k_] := Module[{d = Differences[Divisors[k]]}, CountDistinct[d] < Length[d]]; Select[Range[200], q] (* Amiram Eldar, Jan 27 2025 *)

Formula

A060682(a(n)) < A000005(a(n)) - 1.
Showing 1-3 of 3 results.