cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A174905 Numbers with no pair (d,e) of divisors such that d < e < 2*d.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 76, 79, 81, 82, 83, 85, 86, 87, 89, 92, 93, 94, 95, 97, 98, 101, 103, 106
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 01 2010

Keywords

Comments

A174903(a(n)) = 0; complement of A005279;
sequences of powers of primes are subsequences;
a(n) = A129511(n) for n < 27, A129511(27) = 35 whereas a(27) = 37.
Also the union of A241008 and A241010 (see the link for a proof). - Hartmut F. W. Hoft, Jul 02 2015
In other words: numbers n with the property that all parts in the symmetric representation of sigma(n) have width 1. - Omar E. Pol, Dec 08 2016
Sequence A357581 shows the numbers organized in columns of a square array by the number of parts in their symmetric representation of sigma. - Hartmut F. W. Hoft, Oct 04 2022

Crossrefs

Programs

  • Haskell
    a174905 n = a174905_list !! (n-1)
    a174905_list = filter ((== 0) . a174903) [1..]
    -- Reinhard Zumkeller, Sep 29 2014
  • Maple
    filter:= proc(n)
      local d,q;
       d:= numtheory:-divisors(n);
       min(seq(d[i+1]/d[i],i=1..nops(d)-1)) >= 2
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 08 2014
  • Mathematica
    (* it suffices to test adjacent divisors *)
    a174905[n_] := Module[{d = Divisors[n]}, ! Apply[Or, Map[2 #[[1]] > #[[2]] &, Transpose[{Drop[d, -1], Drop[d, 1]}]]]]
    (* Hartmut F. W. Hoft, Aug 07 2014 *)
    Select[Range[106], !MatchQ[Divisors[#], {_, d_, e_, _} /; e < 2d]& ] (* Jean-François Alcover, Jan 31 2018 *)

A129510 Number of distinct differences between pairs of distinct divisors of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 6, 3, 6, 1, 10, 1, 6, 5, 10, 1, 13, 1, 13, 6, 6, 1, 18, 3, 6, 6, 14, 1, 19, 1, 15, 6, 6, 6, 24, 1, 6, 6, 22, 1, 23, 1, 15, 12, 6, 1, 30, 3, 15, 6, 15, 1, 25, 6, 23, 6, 6, 1, 37, 1, 6, 13, 21, 6, 25, 1, 15, 6, 24, 1, 40, 1, 6, 13, 15, 6, 26, 1, 34, 10, 6, 1, 45, 6, 6, 6, 26
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 19 2007

Keywords

Comments

a(n) = #{|x-y|: x <> y and n mod x = n mod y = 0};
a(n) = 1 iff n is prime;
a(n) <= A000217(A000005(a(n))-1) = A066446(n):
a(A129511(n))=A066446(A129511(n)), a(A129512(n)) < A066446(A129512(n)).

Examples

			n=44, set of divisors of 44 = {1,2,4,11,22,44}:
44-22=22, 44-11=33, 44-4=40, 44-2=42, 44-1=41,
22-11=11, 22-4=18, 22-2=20, 22-1=21,
11-4=7, 11-2=9, 11-1=10, 4-2=2, 4-1=3, 2-1=1,
a(44) = #{1,2,3,7,9,10,11,18,20,21,22,33,40,41,42} = 15;
n=45, set of divisors of 45 = {1,3,5,9,15,45}:
45-15=30, 45-9=36, 45-5=40, 45-3=42, 45-1=44,
15-9=6, 15-5=10, 15-3=12, 15-1=14,
9-5=4, 9-3=6, 9-1=8, 5-3=2, 5-1=4, 3-1=2,
a(45) = #{2,4,6,8,10,12,14,30,36,40,42,44} = 12.
		

Crossrefs

Cf. A000005.

Programs

  • Mathematica
    a[n_]:=Length[Union[Flatten[Differences/@Subsets[Divisors[n],{2}]]]];Table[a[n],{n,88}] (* James C. McMahon, Jan 21 2025 *)
  • PARI
    a(n)=my(d=divisors(n),v=List()); for(i=1,#d-1,for(j=i+1,#d, listput(v,d[j]-d[i]))); #Set(v) \\ Charles R Greathouse IV, Aug 26 2015

A129512 Numbers with at least two pairs of distinct divisors having equal differences.

Original entry on oeis.org

6, 12, 15, 18, 20, 24, 28, 30, 36, 40, 42, 45, 48, 54, 56, 60, 63, 66, 70, 72, 75, 78, 80, 84, 88, 90, 91, 96, 99, 100, 102, 105, 108, 110, 112, 114, 120, 126, 130, 132, 135, 138, 140, 144, 150, 153, 156, 160, 162, 165, 168, 174, 176, 180, 182, 186, 189, 190, 192, 195
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 19 2007

Keywords

Examples

			See example for a(12) = 45 in A129510.
		

Crossrefs

Cf. A129510, A066446, A129511 (complement).
Subsequences: A008588, A008597, A129521, A259366.

Programs

  • Haskell
    import Data.List.Ordered (minus)
    a129512 n = a129512_list !! (n-1)
    a129512_list = minus [1..] a129511_list
    -- Reinhard Zumkeller, Aug 10 2015
    
  • Mathematica
    q[k_] := Count[Tally[Differences /@ Subsets[Divisors[k], {2}] // Flatten][[;; , 2]], ?(# > 1 &)] > 0; Select[Range[200], q] (* _Amiram Eldar, Jan 27 2025 *)
  • PARI
    is(n)=my(d=divisors(n)); for(i=1,#d-2, for(j=i+1,#d-1, for(k=1,#d, if(i!=k && setsearch(d, d[j]-d[i]+d[k]), return(1))))); 0 \\ Charles R Greathouse IV, Aug 26 2015

Formula

A129510(a(n)) < A066446(a(n)).
Showing 1-3 of 3 results.