cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A368949 Complement of A368087 in A174905.

Original entry on oeis.org

21, 33, 39, 51, 55, 57, 65, 69, 85, 87, 93, 95, 111, 115, 119, 123, 129, 133, 141, 145, 147, 155, 159, 161, 171, 177, 183, 185, 201, 203, 205, 207, 213, 215, 217, 219, 230, 235, 237, 249, 253, 259, 261, 265, 267, 275, 279, 287, 290, 291, 295, 301, 303, 305, 309, 310, 319, 321, 327, 329, 333, 335, 339, 341
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jan 10 2024

Keywords

Comments

A298855 is a subsequence, number 147 = 3 * 7^2 is the first entry in A368949 not in A298855. This sequence is a subsequence of A174905 = A241008 union A241010.
Alternate definition: Every number n in this sequence has at least 2 distinct odd prime factors and its symmetric representation of sigma consists only of parts of width 1.

Examples

			21 is the smallest number in this sequence since 3 * 5 is not in A174905.
The smallest number in this sequence with 3 distinct odd prime factors is 903 = 3*7*43 which has width pattern (A341969) 101010101010101 of length 17 since ... < d_i < 2 * d_i < d_(i+1) < 2 * d_(i+1) ... holds for all its divisors.
		

Crossrefs

Programs

  • Mathematica
    (* a174905[ ] is defined in A174905 and propQ[ ] in A368087 *)
    a368949[m_, n_] := Select[Range[m, n], a174905[#]&&!propQ[#]&]
    a368949[1, 350]

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A005279 Numbers having divisors d, e with d < e < 2*d.

Original entry on oeis.org

6, 12, 15, 18, 20, 24, 28, 30, 35, 36, 40, 42, 45, 48, 54, 56, 60, 63, 66, 70, 72, 75, 77, 78, 80, 84, 88, 90, 91, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 120, 126, 130, 132, 135, 138, 140, 143, 144, 150, 153, 154, 156, 160, 162, 165, 168, 170, 174, 175, 176
Offset: 1

Views

Author

Keywords

Comments

The arithmetic and harmonic means of A046793(n) and a(n) are both integers.
n is in this sequence iff n is a multiple of some term in A020886.
a(n) is also a positive integer v for which there exists a smaller positive integer u such that the contraharmonic mean (uu+vv)/(u+v) is an integer c (in fact, there are two distinct values u giving with v the same c). - Pahikkala Jussi, Dec 14 2008
A174903(a(n)) > 0; complement of A174905. - Reinhard Zumkeller, Apr 01 2010
Also numbers n such that A239657(n) > 0. - Omar E. Pol, Mar 23 2014
Erdős (1948) shows that this sequence has a natural density, so a(n) ~ k*n for some constant k. It can be shown that k < 3.03, and by numerical experiments it seems that k is around 1.8. - Charles R Greathouse IV, Apr 22 2015
Numbers k such that at least one of the parts in the symmetric representation of sigma(k) has width > 1. - Omar E. Pol, Dec 08 2016
Erdős conjectured that the asymptotic density of this sequence is 1. The numbers of terms not exceeding 10^k for k = 1, 2, ... are 1, 32, 392, 4312, 45738, 476153, 4911730, 50359766, 513682915, 5224035310, ... - Amiram Eldar, Jul 21 2020
Numbers with at least one partition into two distinct parts (s,t), sWesley Ivan Hurt, Jan 16 2022
Appears to be the set of numbers x such that there exist numbers y and z satisfying the condition (x^2+y^2)/(x^2+z^2) = (x+y)/(x+z). For example, (15^2+10^2)/(15^2+3^2) = (15+10)/(15+3), so 15 is in the sequence. - Gary Detlefs, Apr 01 2023
From Bob Andriesse, Nov 26 2023: (Start)
Rewriting (x^2+y^2) / (x^2+z^2) = (x+y) / (x+z) as (x^2+y^2) / (x+y) = (x^2+z^2) / (x+z) has the advantage that the values on both sides of the = sign in the given example become integers. A possible sequence with the name: "k's for which r = (k^2+m^2) / (k+m) can be an integer while mA053629(n) and the r's being A009003(n). If (k^2+m^2) / (k+m) = r and m satisfies the divisibility condition, then r-m also does, because (k^2 + (r-m)^2) / (k + (r-m)) = r as well, confirming Pahikkala Jussi's comment about the existence of two distinct values for his u.
The fact that 15 is in the sequence is not so much because (15^2 + 10^2) / (15^2 + 3^2) = 1.3888... = (15+10) / (15+3), as indicated by Gary Detlefs, but rather because (15+10) | (15^2 + 10^2). And since r = (15^2 + 10^2) / (15+10) = 13, the second value that satisfies the divisibility condition is 13-10 = 3, so (15^2 + 3^2) / (15+3) = 13 as well.
Since (k+m)| (k^2 + m^2) is equivalent to (k+m) | 2*k^2 as well as to (k+m) | 2*m^2, both of these alternative divisibility conditions can be used to generate the same sequence too. (End)

References

  • R. K. Guy, Unsolved Problems in Number Theory, E3.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A024619 and hence of A002808.

Programs

  • Haskell
    a005279 n = a005279_list !! (n-1)
    a005279_list = filter ((> 0) . a174903) [1..]
    -- Reinhard Zumkeller, Sep 29 2014
    
  • Maple
    isA005279 := proc(n) local divs,d,e ; divs := numtheory[divisors](n) ; for d from 1 to nops(divs)-1 do for e from d+1 to nops(divs) do if divs[e] < 2*divs[d] then RETURN(true) ; fi ; od: od: RETURN(false) : end; for n from 3 to 300 do if isA005279(n) then printf("%d,",n) ; fi ; od : # R. J. Mathar, Jun 08 2006
  • Mathematica
    aQ[n_] := Select[Partition[Divisors[n], 2, 1], #[[2]] < 2 #[[1]] &] != {}; Select[Range[178], aQ] (* Jayanta Basu, Jun 28 2013 *)
  • PARI
    is(n)=my(d=divisors(n));for(i=3,#d,if(d[i]<2*d[i-1],return(1)));0 \\ Charles R Greathouse IV, Apr 22 2015
    
  • Python
    from sympy import divisors
    def is_A005279(n): D=divisors(n)[1:]; return any(e<2*d  for d,e in zip(D, D[1:]))
    # M. F. Hasler, Mar 20 2025

Formula

a(n) = A010814(n)/2. - Omar E. Pol, Dec 04 2016

A239657 Number of odd divisors m of n such that there is a divisor d of n with d < m < 2*d.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 3, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 0, 1, 0, 0, 3, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, 1, 2, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 5, 1, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 2, 0, 1, 4, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0, 0, 5, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Mar 23 2014

Keywords

Comments

The original name was: Number of odd divisors of n minus the number of parts in the symmetric representation of sigma(n).
Observation: at least the indices of the first 42 positive elements coincide with A005279: 6, 12, 15, 18, 20, 24..., checked (by hand) up to n = 2^7.
The observation is true for the indices of all positive elements. Hence the indices of the zeros give A174905. - Omar E. Pol, Jan 06 2017
a(n) is the number of subparts minus the number of parts in the symmetric representation of sigma(n). For the definition of "subpart" see A279387. - Omar E. Pol, Sep 26 2018
a(n) is the number of subparts of the symmetric representation of sigma(n) that are not in the first layer. - Omar E. Pol, Jan 26 2025

Examples

			Illustration of the symmetric representation of sigma(15) = 24 in the third quadrant:
.      _
.     | |
.     | |
.     | |
.     | |
.     | |
.     | |
.     | |
.     |_|_ _ _
.    8      | |_ _
.           |_    |
.             |_  |_
.            8  |_ _|
.                   |
.                   |_ _ _ _ _ _ _ _
.                   |_ _ _ _ _ _ _ _|
.                 8
.
For n = 15 the divisors of 15 are 1, 3, 5, 15, so the number of odd divisors of 15 is equal to 4. On the other hand the parts of the symmetric representation of sigma(15) are [8, 8, 8], there are three parts, so a(15) = 4 - 3 = 1.
From _Omar E. Pol_, Sep 26 2018: (Start)
Also the number of odd divisors of 15 equals the number of partitions of 15 into consecutive parts and equals the number of subparts in the symmetric representation of sigma(15). Then we have that the number of subparts minus the number of parts is  4 - 3 = 1, so a(15) = 1.
.      _
.     | |
.     | |
.     | |
.     | |
.     | |
.     | |
.     | |
.     |_|_ _ _
.    8      | |_ _
.           |_ _  |
.          7  |_| |_
.            1  |_ _|
.                   |
.                   |_ _ _ _ _ _ _ _
.                   |_ _ _ _ _ _ _ _|
.                 8
.
The above diagram shows the symmetric representation of sigma(15) with its four subparts: [8, 7, 1, 8]. (End)
From _Omar E. Pol_, Mar 30 2025: (Start)
The above diagram also shows that in the first layer there are three parts (having sizes [8, 7, 8]). Also there is another part that is not in the first layer, so a(15) = 1.
On the other hand for n = 15 there is only one odd divisor m of 15 such that  d < m < 2*d and d divides 15. That odd divisor is 5 as shown below, so a(15) = 1.
   d  <  m  <  2*d
--------------------
   1            2
   3     5      6
   5           10
  15           30
.
For n = 18 there are two odd divisors m of 18 such that  d < m < 2*d and d divides 18. Those odd divisors are 3 and 9 as shown below, so a(18) = 2.
   d  <  m  <  2*d
--------------------
   1            2
   2     3      4
   3            6
   6     9     12
   9           18
  18           36
.
(End)
		

Crossrefs

Programs

Formula

a(n) = A001227(n) - A237271(n).

Extensions

New Name from Omar E. Pol, Jan 26 2025

A241008 Numbers n with the property that the number of parts in the symmetric representation of sigma(n) is even, and that all parts have width 1.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 27, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 67, 68, 69, 71, 73, 74, 76, 79, 82, 83, 85, 86, 87, 89, 92, 93, 94, 95, 97
Offset: 1

Views

Author

Hartmut F. W. Hoft, Aug 07 2014

Keywords

Comments

The first eight entries in A071561 but not in this sequence are 75, 78, 102, 105, 114, 138, 174 & 175.
The first eight entries in A239929 but not in this sequence are 21, 27, 33, 39, 51, 55, 57 & 65.
The union of this sequence and A241010 equals A174905 (see link in A174905 for a proof). Updated by Hartmut F. W. Hoft, Jul 02 2015
Let n = 2^m * Product_{i=1..k} p_i^e_i = 2^m * q with m >= 0, k >= 0, 2 < p_1 < ... < p_k primes and e_i >= 1, for all 1 <= i <= k. For each number n in this sequence k > 0, at least one e_i is odd, and for any two odd divisors f < g of n, 2^(m+1) * f < g. Let the odd divisors of n be 1 = d_1 < ... < d_2x = q where 2x = sigma_0(q). The z-th region of the symmetric spectrum of n has area a_z = 1/2 * (2^(m+1) - 1) *(d_z + d_(2x+1-z)), for 1 <= z <= 2x. Therefore, the sum of the area of the regions equals sigma(n). For a proof see Theorem 6 in the link of A071561. - Hartmut F. W. Hoft, Sep 09 2015, Sep 04 2018
First differs from A071561 at a(43). - Omar E. Pol, Oct 06 2018

Crossrefs

Programs

  • Mathematica
    (* path[n] and a237270[n] are defined in A237270 *)
    atmostOneDiagonalsQ[n_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], -1] - path[n-1], 1]]]
    Select[Range[100], atmostOneDiagonalsQ[#] && EvenQ[Length[a237270[#]]]&] (* data *)

A241010 Numbers n with the property that the number of parts in the symmetric representation of sigma(n) is odd, and that all parts have width 1.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 25, 32, 49, 50, 64, 81, 98, 121, 128, 169, 242, 256, 289, 338, 361, 484, 512, 529, 578, 625, 676, 722, 729, 841, 961, 1024, 1058, 1156, 1250, 1369, 1444, 1681, 1682, 1849, 1922, 2048, 2116, 2209, 2312, 2401, 2738, 2809, 2888, 3025, 3249, 3362, 3364, 3481, 3698, 3721, 3844
Offset: 1

Views

Author

Hartmut F. W. Hoft, Aug 07 2014

Keywords

Comments

The first eight entries in A071562 but not in this sequence are 6, 12, 15, 18, 20, 24, 28 & 30.
The first eight entries in A238443 but not in this sequence are 6, 12, 18, 20, 24, 28, 30 & 36.
The union of A241008 and of this sequence equals A174905 (for a proof see link in A174905).
Let n = 2^m * product(p_i^e_i, i=1,...,k) = 2^m * q with m >= 0, k >= 0, 2 < p_1, ...< p_k primes and e_i >= 1, for all 1 <= i <= k. For each number n in this sequence all e_i are even, and for any two odd divisors f < g of n, 2^(m+1) * f < g. The sum of the areas of the regions r(n, z) equals sigma(n). For a proof of the characterization and the formula see the theorem in the link below.
Numbers 3025 = 5^2 * 11^2 and 510050 = 2^1 * 5^2 * 101^2 are the smallest odd and even numbers, respectively, in the sequence with two distinct odd prime factors.
Among the 706 numbers in the sequence less than 1000000 (see link to the table) there are 143 that have two different odd prime factors, but none with three. All numbers with three different odd prime factors are larger than 500000000. Number 4450891225 = 5^2 * 11^2 * 1213^2 is in the sequence, but may not be the smallest one with three different odd prime factors. Note that 1213 is the first prime that extends the list of divisors of 3025 while preserving the property for numbers in this sequence.
The subsequence of numbers n = 2^(k-1) * p^2 satisfying the constraints above is A247687.
n = 3^(2*h) = 9^h = A001019(h), h>=0, is the smallest number for which the symmetric representation of sigma(n) has 2*h+1 regions of width one, for example for h = 1, 2, 3 and 5, but not for h = 4 in which case 3025 = 5^2 * 11^2 < 3^8 = 6561 is the smallest (see A318843). [Comment corrected by Hartmut F. W. Hoft, Sep 04 2018]
Computations using this characterization are more efficient than those of Dyck paths for the symmetric representations of sigma(n), e.g., the Mathematica code below.

Examples

			This irregular triangle presents in each column those elements of the sequence that have the same factor of a power of 2.
  row/col      2^0    2^1   2^2   2^3    2^4    2^5  ...
   2^k:          1      2     4     8     16     32  ...
   3^2:          9
   5^2:         25     50
   7^2:         49     98
   3^4:         81
  11^2:        121    242   484
  13^2:        169    338   676
  17^2:        289    578  1156  2312
  19^2:        361    722  1444  2888
  23^2:        529   1058  2116  4232
   5^4:        625   1250
   3^6:        729
  29^2:        841   1682  3364  6728
  31^2:        961   1922  3844  7688
  37^2:       1369   2738  5476 10952 21904
  41^2:       1681   3362  6724 13448 26896
  43^2:       1849   3698  7396 14792 29584
  47^2:       2209   4418  8836 17672 35344
   7^4:       2401   4802
  53^2:       2809   5618 11236 22472 44944
  5^2*11^2:   3025
  3^2*19^2:   3249
  59^2:       3481   6962 13924 27848 55696
  61^2:       3721   7442 14884 29768 59536
  67^2:       4489   8978 17956 35912 71824 143648
  3^2*23^2:   4761
  71^2:       5041
  ...
  5^2*101^2:225025 510050
  ...
Number 3025 = 5^2 * 11^2 is in the sequence since its divisors are 1, 5, 11, 25, 55, 121, 275, 605 and 3025. Number 6050 = 2^1 * 5^2 * 11^2 is not in the sequence since 2^2 * 5 > 11 while 5 < 11.
Number 510050 = 2^1 * 5^2 * 101^2 is in the sequence since its 9 odd divisors 1, 5, 25, 101, 505, 2525, 10201, 51005 and 225025 are separated by factors larger than 2^2. The areas of its 9 regions are 382539, 76515, 15339, 3939, 1515, 3939, 15339, 76515 and 382539. However, 2^2 * 5^2 * 101^2 is not in the sequence.
The first row is A000079.
The rows, except the first, are indexed by products of even powers of the odd primes satisfying the property, sorted in increasing order.
The first column is a subsequence of A244579.
A row labeled p^(2*h), h>=1 and p>=3 with p = A000040(n), has A098388(n) entries.
Starting with the second column, dividing the entries of a column by 2 creates a proper subsequence of the prior column.
See A259417 for references to other sequences of even powers of odd primes that are subsequences of column 1.
The first entry greater than 16 in column labeled 2^4 is 21904 since 37 is the first prime larger than 2^5. The rightmost entry in the row labeled 19^2 is 2888 in the column labeled 2^3 since 2^4 < 19 < 2^5.
		

Crossrefs

Cf. A000203, A174905, A236104, A237270 (symmetric representation of sigma(n)), A237271, A237593, A238443, A241008, A071562, A246955, A247687, A250068, A250070, A250071.

Programs

  • Mathematica
    (* path[n] and a237270[n] are defined in A237270 *)
    atmostOneDiagonalsQ[n_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], -1] - path[n-1], 1]]]
    Select[Range[1000], atmostOneDiagonalsQ[#] && OddQ[Length[a237270[#]]]&] (* data *)
    (* more efficient code based on numeric characterization *)
    divisorPairsQ[m_, q_] := Module[{d = Divisors[q]}, Select[2^(m + 1)*Most[d] - Rest[d], # >= 0 &] == {}]
    a241010AltQ[n_] := Module[{m, q, p, e}, m=IntegerExponent[n, 2]; q=n/2^m; {p, e} = Transpose[FactorInteger[q]]; q==1||(Select[e, EvenQ]==e && divisorPairsQ[m, q])]
    a241010Alt[m_,n_] := Select[Range[m, n], a241010AltQ]
    a241010Alt[1,4000] (* data *)

Formula

Formula for the z-th region in the symmetric representation of n = 2^m * q in this sequence, 1 <= z <= sigma_0(q) and q odd: r(n, z) = 1/2 * (2^(m+1) - 1) * (d_z + d_(2*x+2-z)) where 1 = d_1 < ... < d_(2*x+1) = q are the odd divisors of n.

Extensions

More terms and further edited by Hartmut F. W. Hoft, Jun 26 2015 and Jul 02 2015 and corrected Oct 11 2015

A318843 a(n) is the smallest number k such that the symmetric representation of sigma(k) consists of n parts of width 1.

Original entry on oeis.org

1, 3, 9, 21, 81, 147, 729, 903, 3025, 6875, 59049, 29095, 531441, 171875, 366025, 643885, 43046721, 3511475
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 04 2018

Keywords

Comments

The sequence is infinite since, for example, for any n >= 1 the symmetric representation of sigma(3^n) consists of n + 1 parts of width 1. However, it is not increasing since a(11) = 59049 = 3^10 and a(12) = 29095 = 5 * 11 * 23^2. Also a(13) <= 531441 = 3^12.
This sequence is a subsequence of A174905; its subsequences a(n) for odd/even n are subsequences of A241010/A241008, respectively. Some even-indexed elements of this sequence are members of A239663, e.g., a(2), a(4), a(6), a(8) and a(12), but not a(10) = 6875.
The central pair of parts in the symmetric representation of sigma(a(2)), sigma(a(4)) and sigma(a(8)) meets at the diagonal (see A298856).
From Hartmut F. W. Hoft, Oct 04 2021: (Start)
An upper bound to the sequence is a(n) <= 3^(n-1), n >= 1, (see A348171).
For p = 1,2,3,5,7,11,13,17, a(p) = 3^(p-1) and this equality possibly holds for all a(p) with p a prime.
Also, 75 * 10^6 < a(19) <= 3^18, a(20) = 15391255, a(21) = 44289025 and a(n) > 75 * 10^6 for n > 21.
a(13)-a(18) computations based on A348171 rather than A237270.
The symmetric representation of sigma(3^(p-1)), p prime, consists of p parts and its middle part has area 3^((p-1)/2). (End)
a(n) >= A038547(n) with equality for n=1 and primes n since the distinct prime divisors of n can be replaced by primes 3, 5, 7, 11, ... yielding a smaller number k with the same number of odd divisors. However, some parts in the symmetric representation of sigma(k) have width at least 2. - Hartmut F. W. Hoft, Dec 11 2023

Examples

			The smallest number k whose symmetric representation of sigma(k) consists of four parts of width one is a(4) = 21. The parts are 11, 5, 5, 11.
a(4) = 3*7 has width pattern, A341969, 1010101 while A038547(4) = 3*5 has width pattern 1012101. a(6) = 3 * 7^2 = 147 has width pattern 10101010101 while A038547(6) = 3^2 * 5 = 45 has width pattern 10121212101. - _Hartmut F. W. Hoft_, Dec 11 2023
		

Crossrefs

Programs

  • Mathematica
    (* Function path[] is defined in A237270 *)
    segmentsSR[pathN0_, pathN1_] := SplitBy[Map[Min, Drop[Drop[pathN0, 1], -1] - pathN1], #==0&]
    regions[pathN0_ ,pathN1_] := Select[Map[Apply[Plus, #]&, segmentsSR[pathN0, pathN1]], #!=0&]
    width1Q[pathN0_, pathN1_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[pathN0, 1], -1] - pathN1, 1]]]
    (* parameter seq is the list of elements of the sequence in interval 1..m-1 already computed with an entry of 0 representing an element not yet found *)
    a318843[m_, n_, seq_] := Module[{list=Join[seq, Table[0, 10]], path1=path[m-1], path0, k, a, r, w}, For[k=m, k<=n, k++, path0=path[k]; a=regions[path0, path1]; r=Length[a]; w=width1Q[path0, path1]; If[w && list[[r]]==0, list[[r]]=k]; path1=path0]; list]
    a318843[2,60000,{1}] (* data - actually computed in steps *)

Extensions

a(13)-a(18) from Hartmut F. W. Hoft, Oct 04 2021

A253258 Square array read by antidiagonals, j>=1, k>=1: T(j,k) is the j-th number n such that the symmetric representation of sigma(n) has at least a part with maximum width k.

Original entry on oeis.org

1, 2, 6, 3, 12, 60, 4, 15, 72, 120, 5, 18, 84, 180, 360, 7, 20, 90, 240, 420, 840, 8, 24, 126, 252, 720, 1080, 3360, 9, 28, 140, 336, 1008, 1260, 3600, 2520, 10, 30, 144, 378, 1200, 1440, 3780, 5544, 5040, 11, 35, 168, 432, 1320, 1680, 3960, 6300, 7560, 10080, 13, 36, 198, 480, 1512, 1800, 4200, 6720, 9240, 12600, 15120
Offset: 1

Views

Author

Omar E. Pol, Jul 08 2015

Keywords

Comments

This is a permutation of the natural numbers.
Row 1 gives A250070.
For more information about the widths of the symmetric representation of sigma see A249351 and A250068.
The next term: 120 < T(2,4) < 360.
From Hartmut F. W. Hoft, Sep 20 2024: (Start)
Column T(j,1), j>=1, forms A174905 and is a permutation of A357581. Numbers T(j,k), j>=1 and k>1, form A005279. Conjecture: Every column of the square array contains odd numbers.
The sequence of smallest odd numbers in each column forms A347980. E.g., in column 12 the smallest odd number is T(466, 12) = 765765 = A347980(12) which is equivalent to A250068(765765) = 12. (End)

Examples

			The corner of the square array T(j,k) begins:
  1,  6, 60, 120, 360, ...
  2, 12, 72, ...
  3, 15, 84, ...
  4, 18, ...
  5, 20, ...
  7, ...
  ...
For j = 1 and k = 2; T(1,2) is the first number n such that the symmetric representation of sigma(n) has a part with maximum width 2 as shown below:
.
      Dyck paths            Cells              Widths
      _ _ _ _             _ _ _ _
      _ _ _  |_          |_|_|_|_|_          / / / /
           |   |_              |_|_|_              / /
           |_ _  |             |_|_|_|             / / /
               | |                 |_|                 /
               | |                 |_|                 /
               | |                 |_|                 /
.
The widths of the symmetric representation of sigma(6) = 12 are [1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1], also the 6th row of triangle A249351.
From _Hartmut F. W. Hoft_, Sep 20 2024: (Start)
Extending the terms T(j,k) to a 12x12 square array:
j\k 1  2  3   4   5    6    7    8     9     10    11    12
--------------------------------------------------------------
1 | 1  6  60  120 360  840  3360 2520  5040  10080 15120 32760
2 | 2  12 72  180 420  1080 3600 5544  7560  12600 20160 36960
3 | 3  15 84  240 720  1260 3780 6300  9240  13860 25200 39600
4 | 4  18 90  252 1008 1440 3960 6720  10920 15840 35280 41580
5 | 5  20 126 336 1200 1680 4200 6930  11880 16380 40320 43680
6 | 7  24 140 378 1320 1800 4320 7140  14040 16800 42840 45360
7 | 8  28 144 432 1512 1980 4620 7920  16632 18480 46800 46200
8 | 9  30 168 480 1560 2016 4680 8190  17160 18900 47880 47520
9 | 10 35 198 504 1848 2100 5280 8400  17640 21420 56160 49140
10| 11 36 210 540 1890 2160 5400 9360  18720 21840 56700 51480
11| 13 40 216 594 2184 2340 5460 10296 19800 22680 57120 52920
12| 14 42 264 600 2310 2640 5940 10800 20790 23760 57960 54600
...
(End)
		

Crossrefs

Programs

  • Mathematica
    (* Computing table T(j,k) of size mxn with bound b *)
    eP[n_] := If[EvenQ[n], FactorInteger[n][[1, 2]], 0]+1
    sDiv[n_] := Module[{d=Select[Divisors[n], OddQ]}, Select[Union[d, d*2^eP[n]], #<=row[n]&]]
    mWidth[n_] :=Max[FoldList[#1+If[OddQ[#2], 1, -1]&, sDiv[n]]]
    t253258[{m_, n_}, b_] := Module[{s=Table[0, {i, m+1}, {j, n}], k=1, w, f}, While[k<=b, w=mWidth[k]; If[w<=n, f=s[[m+1, w]]; If[fHartmut F. W. Hoft, Sep 20 2024 *)

Extensions

More terms from Charlie Neder, Jan 11 2019

A357581 Square array read by antidiagonals of numbers whose symmetric representation of sigma consists only of parts that have width 1; column k indicates the number of parts and row n indicates the n-th number in increasing order in each of the columns.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 8, 7, 25, 21, 16, 10, 49, 27, 81, 32, 11, 50, 33, 625, 147, 64, 13, 98, 39, 1250, 171, 729, 128, 14, 121, 51, 2401, 207, 15625, 903, 256, 17, 169, 55, 4802, 243, 31250, 987, 3025, 512, 19, 242, 57, 14641, 261, 117649, 1029, 3249, 6875
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 04 2022

Keywords

Comments

This sequence is a permutation of A174905. Numbers in the even numbered columns of the table form A241008 and those in the odd numbered columns form A241010. The first row of the table is A318843.
This sequence is a subsequence of A240062 and each column in this sequence is a subsequence in the respective column of A240062.

Examples

			The upper left hand 11 X 11 section of the table for a(n) <= 2*10^7:
     1   2    3   4      5    6         7     8      9     10        11 ...
  ----------------------------------------------------------------------
     1   3    9  21     81  147       729   903   3025   6875     59049
     2   5   25  27    625  171     15625   987   3249   7203   9765625
     4   7   49  33   1250  207     31250  1029   4761  13203  19531250
     8  10   50  39   2401  243    117649  1113   6561  13527       ...
    16  11   98  51   4802  261    235298  1239   7569  14013       ...
    32  13  121  55  14641  275   1771561  1265   8649  14499       ...
    64  14  169  57  28561  279   3543122  1281  12321  14661       ...
   128  17  242  65  29282  333   4826809  1375  14161  15471       ...
   256  19  289  69  57122  363   7086244  1407  15129  15633       ...
   512  22  338  85  58564  369   9653618  1491  16641  15957       ...
  1024  23  361  87  83521  387  19307236  1533  17689  16119       ...
  ...
Each column k > 1 contains odd and even numbers since, e.g., 5^(k-1) and 2 * 5^(k-1) belong to it.
Column 1: A000079, subsequence of A174973 = A238443, and of column 1 in A240062.
Column 2: A246955, subsequence of A239929; 78 is the smallest number not in A246955.
Column 3: A247687, subsequence of A279102; 15 is the smallest number not in A247687.
  Odd numbers in column 3: A001248(k), k > 1.
Column 4: A264102, subsequence of A280107; 75 is the smallest number not in A264102.
Column 5: subsequence of A320066; 63 = A320066(1) is not in column 5.
  Numbers in column 5 have the form 2^k * p^4 with p > 2 prime and 0 <= k < floor(log_2(p)).
  Odd numbers in column 5: A030514(k), k > 1.
Column 6: subsequence of A320511; 189 is the smallest number not in column 6.
  Smallest even number in column 6 is 5050.
Column 7: Numbers have the form 2^k * p^6 with p > 2 prime and 0 <= k < floor(log_2(p)).
  Odd numbers in column 7: A030516(k), k > 1.
Numbers in the column numbered with the n-th prime p_n have the form: 2^k * p^(p_n - 1) with p > 2 prime and 0 <= k < floor(log_2(p_n)).
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    width1Table[n_, {r_, c_}] := Module[{k, list=Table[{}, c], wL, wLen, pCount, colLen}, For[k=1, k<=n, k++, wL=a341969[k]; wLen=Length[wL]; pCount=(wLen+1)/2; If[pCount<=c&&Length[list[[pCount]]]=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
    a357581T[n_, r_] := TableForm[width1Table[n, {r, r}]]
    a357581[120000, 10] (* sequence data - first 10 antidiagonals *)
    a357581T[120000, 10] (* upper left hand 10x10 array *)
    a357581T[20000000, 11] (* 11x11 array - very long computation time *)

A174903 Number of divisors d of n such that d

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 1, 6, 0, 0, 0, 3, 0, 3, 0, 0, 3, 0, 0, 7, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 9, 0, 0, 1, 0, 0, 3, 0, 0, 0, 3, 0, 9, 0, 0, 2, 0, 1, 2, 0, 5, 0, 0, 0, 9, 0, 0, 0, 1, 0, 9, 1, 0, 0, 0, 0, 9, 0, 0, 1, 2, 0, 2, 0, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 01 2010

Keywords

Examples

			a(12) = #{(2,3), (3,4), (4,6)} = 3;
a(15) = #{(3,5)} = 1;
a(18) = #{(2,3), (6,9)} = 2;
a(20) = #{(4,5)} = 1;
a(24) = #{(2,3), (3,4), (4,6), (6,8), (8,12)} = 5.
		

Crossrefs

Programs

Formula

a(A174905(n)) = 0; a(A005279(n)) > 0.
a(A174904(n)) = n and a(m) <> n for m < A174904(n).
a(m)*a(n) <= a(m*n) for m, n coprime.
Showing 1-10 of 18 results. Next