cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A240062 Square array read by antidiagonals in which T(n,k) is the n-th number j with the property that the symmetric representation of sigma(j) has k parts, with j >= 1, n >= 1, k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 6, 7, 15, 21, 8, 10, 25, 27, 63, 12, 11, 35, 33, 81, 147, 16, 13, 45, 39, 99, 171, 357, 18, 14, 49, 51, 117, 189, 399, 903, 20, 17, 50, 55, 153, 207, 441, 987, 2499, 24, 19, 70, 57, 165, 243, 483, 1029, 2709, 6069, 28, 22, 77, 65, 195, 261, 513, 1113
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2014

Keywords

Comments

This is a permutation of the positive integers.
All odd primes are in column 2 (together with some even composite numbers) because the symmetric representation of sigma(prime(i)) is [m, m], where m = (1 + prime(i))/2, for i >= 2.
The union of all odd-indexed columns gives A071562, the positive integers that have middle divisors. The union of all even-indexed columns gives A071561, the positive integers without middle divisors. - Omar E. Pol, Oct 01 2018
Each column in the table of A357581 is a subsequence of the respective column in the table of this sequence; however, the first row in the table of A357581 is not a subsequence of the first row in the table of this sequence. - Hartmut F. W. Hoft, Oct 04 2022
Conjecture: T(n,k) is the n-th positive integer with k 2-dense sublists of divisors. - Omar E. Pol, Aug 25 2025

Examples

			Array begins:
   1,  3,  9, 21,  63, 147, 357,  903, 2499, 6069, ...
   2,  5, 15, 27,  81, 171, 399,  987, 2709, 6321, ...
   4,  7, 25, 33,  99, 189, 441, 1029, 2793, 6325, ...
   6, 10, 35, 39, 117, 207, 483, 1113, 2961, 6783, ...
   8, 11, 45, 51, 153, 243, 513, 1197, 3025, 6875, ...
  12, 13, 49, 55, 165, 261, 567, 1239, 3087, 6909, ...
  16, 14, 50, 57, 195, 275, 609, 1265, 3249, 7011, ...
  18, 17, 70, 65, 231, 279, 621, 1281, 3339, 7203, ...
  20, 19, 77, 69, 255, 297, 651, 1375, 3381, 7353, ...
  24, 22, 91, 75, 273, 333, 729, 1407, 3591, 7581, ...
  ...
[Lower right hand triangle of array completed by _Hartmut F. W. Hoft_, Oct 04 2022]
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
    widthTable[n_, {r_, c_}] := Module[{k, list=Table[{}, c], parts}, For[k=1, k<=n, k++, parts=partsSRS[k]; If[parts<=c&&Length[list[[parts]]]=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
    a240062T[n_, r_] := TableForm[widthTable[n, {r, r}]]
    a240062[6069, 10] (* data *)
    a240062T[7581, 10] (* 10 X 10 array - Hartmut F. W. Hoft, Oct 04 2022 *)

Extensions

a(n) > 128 from Michel Marcus, Apr 08 2014

A174905 Numbers with no pair (d,e) of divisors such that d < e < 2*d.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 76, 79, 81, 82, 83, 85, 86, 87, 89, 92, 93, 94, 95, 97, 98, 101, 103, 106
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 01 2010

Keywords

Comments

A174903(a(n)) = 0; complement of A005279;
sequences of powers of primes are subsequences;
a(n) = A129511(n) for n < 27, A129511(27) = 35 whereas a(27) = 37.
Also the union of A241008 and A241010 (see the link for a proof). - Hartmut F. W. Hoft, Jul 02 2015
In other words: numbers n with the property that all parts in the symmetric representation of sigma(n) have width 1. - Omar E. Pol, Dec 08 2016
Sequence A357581 shows the numbers organized in columns of a square array by the number of parts in their symmetric representation of sigma. - Hartmut F. W. Hoft, Oct 04 2022

Crossrefs

Programs

  • Haskell
    a174905 n = a174905_list !! (n-1)
    a174905_list = filter ((== 0) . a174903) [1..]
    -- Reinhard Zumkeller, Sep 29 2014
  • Maple
    filter:= proc(n)
      local d,q;
       d:= numtheory:-divisors(n);
       min(seq(d[i+1]/d[i],i=1..nops(d)-1)) >= 2
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 08 2014
  • Mathematica
    (* it suffices to test adjacent divisors *)
    a174905[n_] := Module[{d = Divisors[n]}, ! Apply[Or, Map[2 #[[1]] > #[[2]] &, Transpose[{Drop[d, -1], Drop[d, 1]}]]]]
    (* Hartmut F. W. Hoft, Aug 07 2014 *)
    Select[Range[106], !MatchQ[Divisors[#], {_, d_, e_, _} /; e < 2d]& ] (* Jean-François Alcover, Jan 31 2018 *)

A253258 Square array read by antidiagonals, j>=1, k>=1: T(j,k) is the j-th number n such that the symmetric representation of sigma(n) has at least a part with maximum width k.

Original entry on oeis.org

1, 2, 6, 3, 12, 60, 4, 15, 72, 120, 5, 18, 84, 180, 360, 7, 20, 90, 240, 420, 840, 8, 24, 126, 252, 720, 1080, 3360, 9, 28, 140, 336, 1008, 1260, 3600, 2520, 10, 30, 144, 378, 1200, 1440, 3780, 5544, 5040, 11, 35, 168, 432, 1320, 1680, 3960, 6300, 7560, 10080, 13, 36, 198, 480, 1512, 1800, 4200, 6720, 9240, 12600, 15120
Offset: 1

Views

Author

Omar E. Pol, Jul 08 2015

Keywords

Comments

This is a permutation of the natural numbers.
Row 1 gives A250070.
For more information about the widths of the symmetric representation of sigma see A249351 and A250068.
The next term: 120 < T(2,4) < 360.
From Hartmut F. W. Hoft, Sep 20 2024: (Start)
Column T(j,1), j>=1, forms A174905 and is a permutation of A357581. Numbers T(j,k), j>=1 and k>1, form A005279. Conjecture: Every column of the square array contains odd numbers.
The sequence of smallest odd numbers in each column forms A347980. E.g., in column 12 the smallest odd number is T(466, 12) = 765765 = A347980(12) which is equivalent to A250068(765765) = 12. (End)

Examples

			The corner of the square array T(j,k) begins:
  1,  6, 60, 120, 360, ...
  2, 12, 72, ...
  3, 15, 84, ...
  4, 18, ...
  5, 20, ...
  7, ...
  ...
For j = 1 and k = 2; T(1,2) is the first number n such that the symmetric representation of sigma(n) has a part with maximum width 2 as shown below:
.
      Dyck paths            Cells              Widths
      _ _ _ _             _ _ _ _
      _ _ _  |_          |_|_|_|_|_          / / / /
           |   |_              |_|_|_              / /
           |_ _  |             |_|_|_|             / / /
               | |                 |_|                 /
               | |                 |_|                 /
               | |                 |_|                 /
.
The widths of the symmetric representation of sigma(6) = 12 are [1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1], also the 6th row of triangle A249351.
From _Hartmut F. W. Hoft_, Sep 20 2024: (Start)
Extending the terms T(j,k) to a 12x12 square array:
j\k 1  2  3   4   5    6    7    8     9     10    11    12
--------------------------------------------------------------
1 | 1  6  60  120 360  840  3360 2520  5040  10080 15120 32760
2 | 2  12 72  180 420  1080 3600 5544  7560  12600 20160 36960
3 | 3  15 84  240 720  1260 3780 6300  9240  13860 25200 39600
4 | 4  18 90  252 1008 1440 3960 6720  10920 15840 35280 41580
5 | 5  20 126 336 1200 1680 4200 6930  11880 16380 40320 43680
6 | 7  24 140 378 1320 1800 4320 7140  14040 16800 42840 45360
7 | 8  28 144 432 1512 1980 4620 7920  16632 18480 46800 46200
8 | 9  30 168 480 1560 2016 4680 8190  17160 18900 47880 47520
9 | 10 35 198 504 1848 2100 5280 8400  17640 21420 56160 49140
10| 11 36 210 540 1890 2160 5400 9360  18720 21840 56700 51480
11| 13 40 216 594 2184 2340 5460 10296 19800 22680 57120 52920
12| 14 42 264 600 2310 2640 5940 10800 20790 23760 57960 54600
...
(End)
		

Crossrefs

Programs

  • Mathematica
    (* Computing table T(j,k) of size mxn with bound b *)
    eP[n_] := If[EvenQ[n], FactorInteger[n][[1, 2]], 0]+1
    sDiv[n_] := Module[{d=Select[Divisors[n], OddQ]}, Select[Union[d, d*2^eP[n]], #<=row[n]&]]
    mWidth[n_] :=Max[FoldList[#1+If[OddQ[#2], 1, -1]&, sDiv[n]]]
    t253258[{m_, n_}, b_] := Module[{s=Table[0, {i, m+1}, {j, n}], k=1, w, f}, While[k<=b, w=mWidth[k]; If[w<=n, f=s[[m+1, w]]; If[fHartmut F. W. Hoft, Sep 20 2024 *)

Extensions

More terms from Charlie Neder, Jan 11 2019

A320066 Numbers k with the property that the symmetric representation of sigma(k) has five parts.

Original entry on oeis.org

63, 81, 99, 117, 153, 165, 195, 231, 255, 273, 285, 325, 345, 375, 425, 435, 459, 475, 525, 561, 575, 625, 627, 665, 693, 725, 735, 775, 805, 819, 825, 875, 897, 925, 975, 1015, 1025, 1075, 1085, 1150, 1175, 1225, 1250, 1295, 1377, 1395, 1421, 1435, 1450, 1479, 1505, 1519, 1550, 1581, 1617, 1645, 1653, 1665
Offset: 1

Views

Author

Omar E. Pol, Oct 05 2018

Keywords

Comments

Those numbers in this sequence with only parts of width 1 in their symmetric representation of sigma form column 5 in the table of A357581. - Hartmut F. W. Hoft, Oct 04 2022

Examples

			63 is in the sequence because the 63rd row of A237593 is [32, 11, 6, 4, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 4, 6, 11, 32], and the 62nd row of the same triangle is [32, 11, 5, 4, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 4, 5, 11, 32], therefore between both symmetric Dyck paths there are five parts: [32, 12, 16, 12, 32].
The sums of these parts is 32 + 12 + 16 + 12 + 32 = 104, equaling the sum of the divisors of 63: 1 + 3 + 7 + 9 + 21 + 63 = 104.
(The diagram of the symmetric representation of sigma(63) = 104 is too large to include.)
		

Crossrefs

Column 5 of A240062.
Cf. A000203, A018267, A237270 (the parts), A237271 (number of parts), A174973 (one part), A239929 (two parts), A279102 (three parts), A280107 (four parts).

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
    a320066[n_] := Select[Range[n], partsSRS[#]==5&]
    a320066[1665] (* Hartmut F. W. Hoft, Oct 04 2022 *)

A320511 Numbers k with the property that the symmetric representation of sigma(k) has six parts.

Original entry on oeis.org

147, 171, 189, 207, 243, 261, 275, 279, 297, 333, 351, 363, 369, 387, 423, 429, 465, 477, 507, 531, 549, 555, 595, 603, 605, 615, 639, 645, 657, 663, 705, 711, 715, 741, 747, 795, 801, 833, 845, 867, 873, 885, 909, 915, 927, 931, 935, 963, 969, 981, 1005, 1017, 1045, 1065, 1071, 1083, 1095, 1105, 1127
Offset: 1

Views

Author

Omar E. Pol, Oct 14 2018

Keywords

Comments

Those numbers in this sequence with only parts of width 1 in their symmetric representation of sigma form column 6 in the table of A357581. - Hartmut F. W. Hoft, Oct 04 2022

Examples

			147 is in the sequence because the 147th row of A237593 is [74, 25, 13, 8, 5, 4, 4, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 4, 4, 5, 8, 13, 25, 74], and the 146th row of the same triangle is [74, 25, 12, 8, 6, 4, 3, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 4, 6, 8, 12, 25, 74], therefore between both symmetric Dyck paths there are six parts: [74, 26, 14, 14, 26, 74].
Note that the sum of these parts is 74 + 26 + 14 + 14 + 26 + 74 = 228, equaling the sum of the divisors of 147: 1 + 3 + 7 + 21 + 49 + 147 = 228.
(The diagram of the symmetric representation of sigma(147) = 228 is too large to include.)
		

Crossrefs

Column 6 of A240062.
Cf. A237270 (the parts), A237271 (number of parts), A174973 (one part), A239929 (two parts), A279102 (three parts), A280107 (four parts), A320066 (five parts).

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
    a320511[n_] := Select[Range[n], partsSRS[#]==6&]
    a320511[1127] (* Hartmut F. W. Hoft, Oct 04 2022 *)

A377654 Numbers m^2 for which the center part (containing the diagonal) of its symmetric representation of sigma, SRS(m^2), has width 1 and area m.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1369, 1521, 1681, 1849, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 4225, 4489, 4761, 5041, 5329, 6241, 6561, 6889, 7225, 7569, 7921, 8649, 9025, 9409, 10201, 10609, 11449, 11881, 12321, 12769, 13225, 14161, 14641, 15129, 15625
Offset: 1

Views

Author

Hartmut F. W. Hoft, Nov 03 2024

Keywords

Comments

Since for numbers m^2 in the sequence the width at the diagonal of SRS(m^2) is 1, the area m of its center part is odd so that this sequence is a proper subsequence of A016754 and since SRS(m^2) has an odd number of parts it is a proper subsequence of A319529. The smallest odd square not in this sequence is 225 = 15^2. SRS(225) is {113, 177, 113}, its center part has maximum width 2, its width at the diagonal is 1.
The k+1 parts of SRS(p^(2k)), p an odd prime and k >= 0, through the diagonal including the center part have areas (p^(2k-i) + p^i)/2 for 0 <= i <= k. They form a strictly decreasing sequence. Since p^(2k) has 2k+1 divisors and SRS(p^(2k)) has 2k+1 parts, all of width 1 (A357581), the even powers of odd primes form a proper subsequence of A244579. For the subsequence of squares of odd primes p, SRS(p^2) consists of the 3 parts { (p^2 + 1)/2, p, (p^2 + 1)/2 } see A001248, A247687 and A357581.
The areas of the parts of SRS(m^2) need not be in descending order through the diagonal as a(112) = 275^2 = 75625 with SRS(75625) = (37813, 7565, 3443, 1525, 715, 738, 275, 738, 715, 1525, 3443, 7565, 37813) demonstrates.
An equivalent description of the sequence is: The center part of SRS(m^2) has width 1, m is odd, and A249223(m^2, m-1) = 0.
Conjectures (true for all a(n) <= 10^8):
(1) The central part of SRS(a(n)) is the minimum of all parts of SRS(a(n)), 1 <= n.
(2) The terms in this sequence are the squares of the terms in A244579.

Examples

			The center part of SRS(a(3)) = SRS(25) has area 5, all 3 parts have width 1, and 25 with 3 divisors also belongs to A244579.
The center part of SRS(a(7)) = SRS(169) has area 13, all 3 parts have width 1, and 169 with 3 divisors also belongs to A244579.
The center part of SRS(a(10)) = SRS(441) has area 21 and width 1, but the maximum width of SRS(441) is 2. Number 441 has 9 divisors and SRS(441) has 7 parts while 21 has 4 divisors and SRS(21) has 4 parts so that 21 is in A244579 while 441 is not.
		

Crossrefs

Programs

  • Mathematica
    (* t237591 and partsSRS compute rows in A237270 and A237591, respectively *)
    (* t249223 and widthPattern are also defined in A376829 *)
    row[n_] := Floor[(Sqrt[8 n+1]-1)/2]
    t237591[n_] := Map[Ceiling[(n+1)/#-(#+1)/2]-Ceiling[(n+1)/(#+1)-(#+2)/2]&, Range[row[n]]]
    partsSRS[n_] := Module[{widths=t249223[n], legs=t237591[n], parts, srs}, parts=widths legs; srs=Map[Apply[Plus, #]&, Select[SplitBy[Join[parts, Reverse[parts]], #!=0&], First[#]!=0&]]; srs[[Ceiling[Length[srs]/2]]]-=Last[widths]; srs]
    t249223[n_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, row[n]]]
    widthPattern[n_] := Map[First, Split[Join[t249223[n], Reverse[t249223[n]]]]]
    centerQ[n_] := Module[{pS=partsSRS[n]}, Sqrt[n]==pS[[(Length[pS]+1)/2]]]/;OddQ[n]
    widthQ[n_] := Module[{wP=SplitBy[widthPattern[n], #!=0&]}, wP[[(Length[wP]+1)/2]]]=={1}/;OddQ[n]
    a377654[m_, n_] := Select[Map[#^2&, Range[m, n, 2]], centerQ[#]&&widthQ[#]&]/;OddQ[m]
    a377654[1, 125]
Showing 1-6 of 6 results.