cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A129518 Numbers k > 2 such that k divides (k-2)!! - 1 and (k-3)!! - 1.

Original entry on oeis.org

3, 7, 47, 59, 79, 83, 103, 107, 127, 139, 191, 199, 211, 251, 263, 283, 307, 331, 367, 379, 383, 431, 467, 479, 499, 503, 547, 587, 599, 607, 631, 643, 659, 727, 743, 811, 823, 827, 839, 859, 863, 883, 887, 907, 971, 991, 1087, 1151, 1163, 1171, 1259, 1283
Offset: 1

Views

Author

Alexander Adamchuk, Apr 18 2007

Keywords

Comments

All terms are primes of the form 4m+3 belonging to A002145. A002145 is the union of this sequence and A129517 (odd primes p such that p divides (p-1)!! - 1).
Odd numbers k > 1 such that k divides (k-1)!! + 1. - Thomas Ordowski, Jul 26 2016

Crossrefs

Cf. A006882 (double factorials).
Cf. A002145 (primes of form 4k+3).
Cf. A129517 (odd primes p such that p divides (p-1)!! - 1).
Cf. A129516 (numbers k such that k divides (k-1)!! - 1).
Cf. A260298.

Programs

  • Mathematica
    Select[Range[3,2000],IntegerQ[((#-2)!!-1)/# ]&&IntegerQ[((#-3)!!-1)/# ]&]

A129516 Numbers k such that k divides (k-1)!! - 1.

Original entry on oeis.org

1, 2, 8, 11, 16, 19, 23, 31, 32, 43, 64, 67, 71, 128, 131, 151, 163, 167, 179, 223, 227, 239, 256, 271, 311, 347, 359, 419, 439, 443, 463, 487, 491, 512, 523, 563, 571, 619, 647, 683, 691, 719, 739, 751, 787, 911, 919, 947, 967, 983, 1019, 1024, 1031, 1039
Offset: 1

Views

Author

Alexander Adamchuk, Apr 18 2007

Keywords

Comments

Terms include all powers of 2 except 2^2 and some primes of the form 4m+3 belonging to A002145. Odd primes in this sequence are listed in A129517. A002145 is the union of A129517 and A129518 (numbers m > 2 such that m divides (m-2)!!-1 and (m-3)!!-1).

Crossrefs

Cf. A006882 (double factorials).
Cf. A002145 (primes of the form 4k+3).
Cf. A129517 (odd primes p such that p divides (p-1)!!-1).
Cf. A129518 (numbers k > 2 such that k divides (k-2)!!-1 and (k-3)!!-1).

Programs

  • Mathematica
    Select[Range[2048],IntegerQ[((#-1)!!-1)/# ]&]

A155187 Prime numbers q of primitive Pythagorean triangles such that perimeters are averages of twin prime pairs, p+1=q(prime), a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes.

Original entry on oeis.org

2, 3, 11, 71, 227, 491, 683, 1103, 1187, 2591, 3923, 4271, 4931, 6737, 7193, 7703, 8093, 8753, 8963, 9173, 9377, 10271, 13043, 13451, 13997, 15233, 15443, 15803, 15887, 17957, 18701, 19961, 20681, 21701, 22031, 22073, 24371, 24473, 24683
Offset: 1

Views

Author

Keywords

Comments

p=1, q=2(prime), a=3, b=4, c=5, s=12-+1 primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[q],AppendTo[lst,q]]],{n,8!}];lst
Showing 1-3 of 3 results.