A129519 First differences of the binomial transform of the distinct partition numbers (A000009).
1, 1, 2, 5, 12, 28, 65, 151, 350, 807, 1850, 4221, 9597, 21760, 49215, 111032, 249856, 560835, 1255854, 2805969, 6256784, 13925698, 30941050, 68634679, 152009239, 336152787, 742276931, 1636747349, 3604206106, 7926412320, 17410413153
Offset: 0
Keywords
Examples
Product formula is illustrated by: A(x) = [1 + x + x^2 + x^3 + x^4 + x^5 +...]* [1 + x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6 +...]* [1 + x^3 + 3x^4 + 6x^5 + 10x^6 + 15x^7 +...]* [1 + x^4 + 4x^5 + 10x^6 + 20x^7 + 35x^8 +...]* [1 + x^5 + 5x^6 + 15x^7 + 35x^8 + 70x^9 +...]*...* [1 + Sum_{k>=n+1} C(k-1,n)*x^k ]*...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Flatten[{1, Differences[Table[Sum[Binomial[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 40}]]}] (* Vaclav Kotesovec, Oct 30 2017 *)
-
PARI
{a(n)=polcoeff(prod(k=0,n,1+sum(i=k+1,n,binomial(i-1,k)*x^i +x*O(x^n))),n)}
Formula
G.f.: A(x) = Product_{n>=1} [1 + x^n/(1-x)^n].
a(n) ~ exp(Pi*sqrt(n/6) + Pi^2/48) * 2^(n - 9/4) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 30 2017