cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129519 First differences of the binomial transform of the distinct partition numbers (A000009).

Original entry on oeis.org

1, 1, 2, 5, 12, 28, 65, 151, 350, 807, 1850, 4221, 9597, 21760, 49215, 111032, 249856, 560835, 1255854, 2805969, 6256784, 13925698, 30941050, 68634679, 152009239, 336152787, 742276931, 1636747349, 3604206106, 7926412320, 17410413153
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2007

Keywords

Examples

			Product formula is illustrated by:
A(x) = [1 + x + x^2 + x^3 + x^4 + x^5 +...]*
[1 + x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6 +...]*
[1 + x^3 + 3x^4 + 6x^5 + 10x^6 + 15x^7 +...]*
[1 + x^4 + 4x^5 + 10x^6 + 20x^7 + 35x^8 +...]*
[1 + x^5 + 5x^6 + 15x^7 + 35x^8 + 70x^9 +...]*...*
[1 + Sum_{k>=n+1} C(k-1,n)*x^k ]*...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Differences[Table[Sum[Binomial[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 40}]]}] (* Vaclav Kotesovec, Oct 30 2017 *)
  • PARI
    {a(n)=polcoeff(prod(k=0,n,1+sum(i=k+1,n,binomial(i-1,k)*x^i +x*O(x^n))),n)}

Formula

G.f.: A(x) = Product_{n>=1} [1 + x^n/(1-x)^n].
a(n) = A266232(n) - A266232(n-1), for n>0. - Vaclav Kotesovec, Oct 30 2017
a(n) ~ exp(Pi*sqrt(n/6) + Pi^2/48) * 2^(n - 9/4) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 30 2017