cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A218482 First differences of the binomial transform of the partition numbers (A000041).

Original entry on oeis.org

1, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812, 309274516740
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2012

Keywords

Comments

a(n) = A103446(n) for n>=1; here a(0) is set to 1 in accordance with the definition and other important generating functions.
From Gus Wiseman, Dec 12 2022: (Start)
Also the number of sequences of compositions (A133494) with weakly decreasing lengths and total sum n. For example, the a(0) = 1 through a(3) = 8 sequences are:
() ((1)) ((2)) ((3))
((11)) ((12))
((1)(1)) ((21))
((111))
((1)(2))
((2)(1))
((11)(1))
((1)(1)(1))
The case of constant lengths is A101509.
The case of strictly decreasing lengths is A129519.
The case of sequences of partitions is A141199.
The case of twice-partitions is A358831.
(End)

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + 54*x^5 + 137*x^6 + 344*x^7 +...
The g.f. equals the product:
A(x) = (1-x)/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
and also equals the series:
A(x) = 1  +  x*(1-x)/((1-x)-x)^2  +  x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2  +  x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2  +  x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
          add(combinat[numbpart](k)*binomial(n,k), k=0..n)
        end:
    a:= n-> b(n)-b(n-1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 19 2014
  • Mathematica
    Flatten[{1, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
  • PARI
    {a(n)=sum(k=0,n,(binomial(n,k)-if(n>0,binomial(n-1,k)))*numbpart(k))}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1-x)^k/((1-x)^k-X^k)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^m*(1-x)^(m*(m-1)/2)/prod(k=1,m,((1-x)^k - X^k))),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^(m^2)*(1-X)^m/prod(k=1,m,((1-x)^k - x^k)^2)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,x^m/((1-x)^m-X^m)/m)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,sigma(m)*x^m/(1-X)^m/m)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1 + x^k/(1-X)^k)^valuation(2*k,2)),n)}

Formula

G.f.: Product_{n>=1} (1-x)^n / ((1-x)^n - x^n).
G.f.: Sum_{n>=0} x^n * (1-x)^(n*(n-1)/2) / Product_{k=1..n} ((1-x)^k - x^k).
G.f.: Sum_{n>=0} x^(n^2) * (1-x)^n / Product_{k=1..n} ((1-x)^k - x^k)^2.
G.f.: exp( Sum_{n>=1} x^n/((1-x)^n - x^n) / n ).
G.f.: exp( Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n ), where sigma(n) is the sum of divisors of n (A000203).
G.f.: Product_{n>=1} (1 + x^n/(1-x)^n)^A001511(n), where 2^A001511(n) is the highest power of 2 that divides 2*n.
a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-2) / (n*sqrt(3)). - Vaclav Kotesovec, Jun 25 2015

A141199 Number of hierarchical ordered partitions of partitions.

Original entry on oeis.org

1, 1, 3, 7, 17, 38, 87, 191, 421, 911, 1963, 4186, 8885, 18724, 39284, 82005, 170521, 353214, 729290, 1501184, 3081869, 6311404, 12896983, 26301515, 53541702, 108815626, 220824295, 447524559, 905850001, 1831526719
Offset: 0

Views

Author

Thomas Wieder, Jun 13 2008, Jun 29 2008, Jul 28 2008

Keywords

Comments

Consider the "ordered partitions of partitions" as described in A055887. They are produced by introducing separators (a term used by J. Riordan) between the parts of a partition. If a partition has P parts, then it is possible to introduce 1, 2, ... P-1 separators. Let "|" denote such a separator. We just append 1,2,...,P-1 separators to each integer partition of n and subsequently form all permutation of the resulting list (which is composed of parts and separators).
There are some rules: If we do not append a separator, then we do not perform any permutation. Furthermore, we do not accept permutations which have a dangling separator in front of the integer parts or past them. E.g. the permutations [|,1,2,3] and [1,2,3,|] are forbidden. Furthermore, sequences of separators as "|,|" are forbidden.
Now we impose a further restriction on the permutations. Consider the elements between two separators. We call their number "occupation number". We just request that the occupation number of a ordered partition is monotonically decreasing (if we start from the left to the right of a permutation written in our notation). If we interpret a separator as a level, then we can speak of a hierarchy. E.g. we do not count [1,|,2,3,|,4] as a hierarchy, but we accept [1,2|,3,4] as a hierarchy. We thus speak of "hierarchically ordered partitions of partitions" for this sequence.
With the generating function f := z -> 1/(mul(1-z^i/mul(1-z^j,j=1..i), i=1..25)); we get the asymptotic expansion using the command equivalent (f(z),z,n);
The result is 3.788561346*exp(-n)^(-log(2)) + O(1/n*exp(-n)^(-log(2))). Let fas := n -> 3.788562346*exp(-n)^(-log(2)); then for n=60 we get fas(60)/A141199(60)= .4367915009e19/4344507472742893655 = 1.005387846.
In short, a(n) is the number of finite sequences of integer partitions with weakly decreasing lengths and total sum n. The case of twice-partitions is A358831. A version choosing compositions is A218482. The strictly decreasing case is A358836. For ordered set partitions we have A005651. For weakly decreasing bigomega see A358335. - Gus Wiseman, Dec 05 2022

Examples

			n=1:
[1]
-------------------------
n=2:
[1, 1],
[1, "|", 1],
[2]
-------------------------
n=3:
[1, 2],
[1, "|", 1, "|", 1],
[1, 1, 1],
[3],
[2, "|", 1],
[1, 1, "|", 1],
[1, "|", 2]
-------------------------
n=4:
[1, 1, 1, "|", 1],
[1, 1, "|", 1, 1],
[2, 2],
[1, 3],
[1, 1, 1, 1],
[1, 1, 2],
[4],
[1, "|", 1, "|", 1, "|", 1],
[1, 2, "|", 1],
[1, 1, "|", 2],
[1, 1, "|", 1, "|", 1],
[2, "|", 1, "|", 1],
[1, "|", 2, "|", 1],
[1, "|", 1, "|", 2],
[1, "|", 3],
[3, "|", 1],
[2, "|", 2].
		

Crossrefs

Programs

  • Maple
    A Maple program to generate these "hierarchically ordered partitions of partitions" is available on request.
    An asymptotic expansion can be found using the generating function given by Vladeta Jovovic. For that purpose we use the Maple program "equivalent" from Bruno Salvy (http://ago.inria.fr/libraries/libraries.html).
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k/prod(j=1, k, 1-x^j))) \\ Seiichi Manyama, Jan 18 2022

Formula

G.f.: 1/Product_{i>=1} (1-x^i/Product_{j=1..i} (1-x^j)). - Vladeta Jovovic, Jul 16 2008

Extensions

More terms from Vladeta Jovovic, Jul 16 2008
a(0)=1 prepended by Seiichi Manyama, Jan 18 2022

A281425 a(n) = [q^n] (1 - q)^n / Product_{j=1..n} (1 - q^j).

Original entry on oeis.org

1, 0, 1, -1, 2, -4, 9, -21, 49, -112, 249, -539, 1143, -2396, 5013, -10550, 22420, -48086, 103703, -223806, 481388, -1029507, 2187944, -4625058, 9742223, -20490753, 43111808, -90840465, 191773014, -405523635, 858378825, -1817304609, 3845492204, -8129023694, 17162802918, -36191083386
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 05 2017

Keywords

Comments

a(n) is n-th term of the Euler transform of -n + 1, 1, 1, 1, ...
Inverse zero-based binomial transform of A000041. The version for strict partitions is A380412, or A293467 up to sign. - Gus Wiseman, Feb 06 2025

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0,
          combinat[numbpart](n), b(n, k-1)-b(n-1, k-1))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 21 2024
  • Mathematica
    Table[SeriesCoefficient[(1 - q)^n / Product[(1 - q^j), {j, 1, n}], {q, 0, n}], {n, 0, 35}]
    Table[SeriesCoefficient[(1 - q)^n QPochhammer[q^(1 + n), q]/QPochhammer[q, q], {q, 0, n}], {n, 0, 35}]
    Table[SeriesCoefficient[1/QFactorial[n, q], {q, 0, n}], {n, 0, 35}]
    Table[Differences[PartitionsP[Range[0, n]], n], {n, 0, 35}] // Flatten
    Table[Sum[(-1)^j*Binomial[n, j]*PartitionsP[n-j], {j, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 06 2017 *)

Formula

a(n) = [q^n] 1/((1 + q)*(1 + q + q^2)*...*(1 + q + ... + q^(n-1))).
a(n) = Sum_{j=0..n} (-1)^j * binomial(n, j) * A000041(n-j). - Vaclav Kotesovec, Oct 06 2017
a(n) ~ (-1)^n * 2^(n - 3/2) * exp(Pi*sqrt(n/12) + Pi^2/96) / (sqrt(3)*n). - Vaclav Kotesovec, May 07 2018

A358901 Number of integer partitions of n whose parts have all different numbers of prime factors (A001222).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 5, 7, 9, 8, 9, 11, 11, 15, 16, 16, 18, 20, 22, 26, 28, 31, 32, 36, 40, 45, 46, 46, 50, 59, 64, 70, 75, 78, 83, 89, 94, 108, 106, 104, 120, 137, 142, 147, 150, 161, 174, 190, 200, 220, 226, 224, 248, 274, 274, 287, 301, 320, 340, 351, 361
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(1) = 1 through a(11) = 7 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
            (21)  (31)  (41)  (42)  (43)   (62)   (54)   (82)   (74)
                              (51)  (61)   (71)   (63)   (91)   (65)
                                    (421)  (431)  (81)   (451)  (83)
                                                  (621)  (631)  (92)
                                                                (A1)
                                                                (821)
		

Crossrefs

The weakly decreasing version is A358909 (complement A358910).
The version not counting multiplicity is A358903, weakly decreasing A358902.
For equal numbers of prime factors we have A319169, compositions A358911.
A001222 counts prime factors, distinct A001221.
A063834 counts twice-partitions.
A358836 counts multiset partitions with all distinct block sizes.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@PrimeOmega/@#&]],{n,0,60}]

Extensions

a(61) and beyond from Lucas A. Brown, Dec 14 2022

A320591 Expansion of Product_{k>=1} (1 + x^k/(1 + x)^k).

Original entry on oeis.org

1, 1, 0, 1, -2, 4, -7, 11, -16, 23, -36, 65, -129, 256, -473, 772, -1028, 835, 776, -5755, 17562, -41750, 86678, -165145, 299949, -541837, 1020029, -2068203, 4509512, -10252952, 23465297, -52762788, 115160832, -243018459, 496094524, -982431070, 1894710043, -3574095362
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 16 2018

Keywords

Comments

After the first term, this is the second term of the n-th differences of A000009, or column n=1 of A378622. - Gus Wiseman, Feb 03 2025

Crossrefs

The version for non-strict partitions is A320590, row n=1 of A175804.
Column n=1 (except first term) of A378622. See also A293467, A377285, A378970, A378971, A380412 (column n=0).
A000009 counts strict integer partitions, differences A087897, A378972.
A266232 gives zero-based binomial transform of strict partitions, differences A129519.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1 + x^k/(1 + x)^k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 29 2018
  • Maple
    seq(coeff(series(mul((1+x^k/(1+x)^k),k=1..n),x,n+1), x, n), n = 0 .. 37); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    nmax = 37; CoefficientList[Series[Product[(1 + x^k/(1 + x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 37; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}] x^k/(k (1 + x)^k), {k, 1, nmax}]], {x, 0, nmax}], x]
    Prepend[Table[Differences[PartitionsQ/@Range[0,k+1],k][[2]],{k,0,30}],1] (* Gus Wiseman, Jan 29 2025 *)
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1, m+2, (1 + x^k/(1 + x)^k))) \\ G. C. Greubel, Oct 29 2018
    

Formula

G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*((1 + x)^k - x^k))).
G.f.: exp(Sum_{k>=1} A000593(k)*x^k/(k*(1 + x)^k)).
From Peter Bala, Dec 22 2020: (Start)
O.g.f.: Sum_{n >= 0} x^(n*(n+1)/2)/Product_{k = 1..n} ((1 + x)^k - x^k). Cf. A307548.
Conjectural o.g.f.: (1/2) * Sum_{n >= 0} x^(n*(n-1)/2)*(1 + x)^n/( Product_{k = 1..n} ( (1 + x)^k - x^k ) ). (End)
a(n+1) = Sum_{k=0..n} (-1)^(n-k) binomial(n,k) A000009(k+1). - Gus Wiseman, Feb 03 2025

A358903 Number of integer partitions of n whose parts have all different numbers of distinct prime factors (A001221).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 7, 8, 7, 9, 10, 10, 10, 9, 11, 15, 14, 13, 15, 14, 14, 17, 16, 17, 17, 16, 16, 17, 17, 21, 26, 24, 23, 25, 27, 29, 32, 31, 29, 36, 36, 35, 37, 37, 42, 49, 45, 44, 50, 49, 50, 58, 55, 55, 58, 56, 58, 66, 62, 65, 75
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(15) = 8 partitions are: (15), (14,1), (12,3), (12,2,1), (10,5), (10,4,1), (6,9), (8,6,1).
		

Crossrefs

Counting prime factors with multiplicity gives A358901.
The weakly decreasing version is A358902, with multiplicity A358335.
A001222 counts prime factors, distinct A001221.
A116608 counts partitions by sum and number of distinct parts.
A358836 counts multiset partitions with all distinct block sizes.

Programs

  • Maple
    p:= proc(n) option remember; nops(ifactors(n)[2]) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
          add((t-> `if`(t b(n$2):
    seq(a(n), n=0..68);  # Alois P. Heinz, Feb 14 2024
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@PrimeNu/@#&]],{n,0,30}]

Extensions

a(56) and beyond from Lucas A. Brown, Dec 14 2022

A358902 Number of integer compositions of n whose parts have weakly decreasing numbers of distinct prime factors (A001221).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 33, 53, 84, 134, 213, 338, 536, 850, 1349, 2136, 3389, 5367, 8509, 13480, 21362, 33843, 53624, 84957, 134600, 213251, 337850, 535251, 847987, 1343440, 2128372, 3371895, 5341977, 8463051, 13407689, 21241181, 33651507, 53312538, 84460690
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(0) = 1 through a(6) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (23)     (24)
                 (111)  (31)    (32)     (33)
                        (211)   (41)     (42)
                        (1111)  (221)    (51)
                                (311)    (222)
                                (2111)   (231)
                                (11111)  (321)
                                         (411)
                                         (2211)
                                         (3111)
                                         (21111)
                                         (111111)
		

Crossrefs

For lengths of partitions see A141199, compositions A218482.
The strictly decreasing case is A358903.
A001222 counts prime factors, distinct A001221.
A011782 counts compositions.
A116608 counts partitions by sum and number of distinct parts.
A334028 counts distinct parts in standard compositions.
A358836 counts multiset partitions with all distinct block sizes.

Programs

  • Maple
    p:= proc(n) option remember; nops(ifactors(n)[2]) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
          add((t-> `if`(t<=i, b(n-j, t), 0))(p(j)), j=1..n)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 14 2024
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],GreaterEqual@@PrimeNu/@#&]],{n,0,10}]

Extensions

a(21) and beyond from Lucas A. Brown, Dec 15 2022

A307501 Expansion of Product_{k>=1} (1 + (x*(1 - x))^k).

Original entry on oeis.org

1, 1, 0, 0, -3, 1, -1, 3, 3, 0, -12, 15, -20, 5, 53, -113, 180, -241, 153, 173, -652, 787, 628, -4801, 11635, -18699, 20775, -12315, -6109, 21253, -7015, -61060, 174382, -260676, 190623, 130141, -549572, 399845, 1577502, -6670524, 14603574, -21111528, 16110192, 14794188, -82586174
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 44; CoefficientList[Series[Product[(1 + (x (1 - x))^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 44; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}] (x (1 - x))^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    Table[Sum[(-1)^(n - k) Binomial[k, n - k] PartitionsQ[k], {k, 0, n}], {n, 0, 44}]

Formula

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d ) * (x*(1 - x))^k/k).
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k,n-k)*A000009(k).

A307310 Expansion of Product_{k>=1} (1 - x^k/(1 - x)^k).

Original entry on oeis.org

1, -1, -2, -3, -4, -4, -1, 9, 34, 89, 200, 409, 779, 1394, 2339, 3624, 4974, 5323, 1682, -13279, -56222, -163136, -408768, -943275, -2059237, -4310179, -8712425, -17072901, -32486302, -60006278, -107341413, -184979170, -303998680, -467127625, -642495990, -696247140
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 02 2019

Keywords

Comments

First differences of the binomial transform of A010815.
Convolution inverse of A218482.

Crossrefs

Programs

  • Maple
    a:=series(mul((1-x^k/(1-x)^k),k=1..100),x=0,35): seq(coeff(a,x,n),n=0..34); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 35; CoefficientList[Series[Product[(1 - x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]

A320564 Expansion of Product_{k>=1} (1 + x^k/(1 - x)^k)^k.

Original entry on oeis.org

1, 1, 3, 10, 30, 87, 249, 705, 1974, 5471, 15032, 40997, 111079, 299151, 801139, 2134251, 5657895, 14930596, 39232009, 102673794, 267692321, 695440442, 1800582809, 4646964755, 11956293758, 30673060344, 78470890246, 200218512582, 509557661691, 1293664233400, 3276659862518
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 15 2018

Keywords

Comments

First differences of the binomial transform of A026007.

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul((1+x^k/(1-x)^k)^k,k=1..n),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 15 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k/(1 - x)^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) (1 - x)^k x^k/(k ((1 - x)^k - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} (-1)^(k+1)*(1 - x)^k*x^k/(k*((1 - x)^k - x^k)^2)).
a(n) ~ Zeta(3)^(1/6) * 2^(n - 13/12) * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3)/4 + (3*Zeta(3))^(2/3) * n^(1/3)/8 - Zeta(3)/16) / (3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Oct 15 2018
Showing 1-10 of 20 results. Next