cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A281425 a(n) = [q^n] (1 - q)^n / Product_{j=1..n} (1 - q^j).

Original entry on oeis.org

1, 0, 1, -1, 2, -4, 9, -21, 49, -112, 249, -539, 1143, -2396, 5013, -10550, 22420, -48086, 103703, -223806, 481388, -1029507, 2187944, -4625058, 9742223, -20490753, 43111808, -90840465, 191773014, -405523635, 858378825, -1817304609, 3845492204, -8129023694, 17162802918, -36191083386
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 05 2017

Keywords

Comments

a(n) is n-th term of the Euler transform of -n + 1, 1, 1, 1, ...
Inverse zero-based binomial transform of A000041. The version for strict partitions is A380412, or A293467 up to sign. - Gus Wiseman, Feb 06 2025

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0,
          combinat[numbpart](n), b(n, k-1)-b(n-1, k-1))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 21 2024
  • Mathematica
    Table[SeriesCoefficient[(1 - q)^n / Product[(1 - q^j), {j, 1, n}], {q, 0, n}], {n, 0, 35}]
    Table[SeriesCoefficient[(1 - q)^n QPochhammer[q^(1 + n), q]/QPochhammer[q, q], {q, 0, n}], {n, 0, 35}]
    Table[SeriesCoefficient[1/QFactorial[n, q], {q, 0, n}], {n, 0, 35}]
    Table[Differences[PartitionsP[Range[0, n]], n], {n, 0, 35}] // Flatten
    Table[Sum[(-1)^j*Binomial[n, j]*PartitionsP[n-j], {j, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 06 2017 *)

Formula

a(n) = [q^n] 1/((1 + q)*(1 + q + q^2)*...*(1 + q + ... + q^(n-1))).
a(n) = Sum_{j=0..n} (-1)^j * binomial(n, j) * A000041(n-j). - Vaclav Kotesovec, Oct 06 2017
a(n) ~ (-1)^n * 2^(n - 3/2) * exp(Pi*sqrt(n/12) + Pi^2/96) / (sqrt(3)*n). - Vaclav Kotesovec, May 07 2018

A293467 a(n) = Sum_{k=0..n} (-1)^k * binomial(n, k) * q(k), where q(k) is A000009 (partitions into distinct parts).

Original entry on oeis.org

1, 0, 0, -1, -3, -7, -14, -25, -41, -64, -100, -165, -294, -550, -1023, -1795, -2823, -3658, -2882, 2873, 20435, 62185, 148863, 314008, 613957, 1155794, 2175823, 4244026, 8753538, 19006490, 42471787, 95234575, 210395407, 453413866, 949508390, 1931939460
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 09 2017

Keywords

Comments

Multiply by (-1)^n to get A380412, which is the first term of the n-th differences of the strict partition numbers, or column n=0 of A378622. - Gus Wiseman, Feb 04 2025

Crossrefs

The non-strict version is the absolute value of A281425; see A175804, A320590.
Up to sign, same as A380412. See A320591, A377285, A378970, A378971.
A000009 counts strict integer partitions, differences A087897.

Programs

  • Mathematica
    Table[Sum[(-1)^k * Binomial[n, k] * PartitionsQ[k], {k, 0, n}], {n, 0, 50}]

A320590 Expansion of Product_{k>=1} 1/(1 - x^k/(1 + x)^k).

Original entry on oeis.org

1, 1, 1, 0, 1, -2, 5, -12, 28, -63, 137, -290, 604, -1253, 2617, -5537, 11870, -25666, 55617, -120103, 257582, -548119, 1158437, -2437114, 5117165, -10748530, 22621055, -47728657, 100932549, -213750621, 452855190, -958925784, 2028187595, -4283531490, 9033779224
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 16 2018

Keywords

Comments

The zero-based binomial transform of this sequence is A000070, and if we remove first terms it becomes A000041.

Crossrefs

Row n=1 of A175804 (except first term). Row n=0 is A281425.
The version for strict partitions is A320591, row n=1 of A378622, first column A293467.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1 - x^k/(1 + x)^k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 29 2018
  • Maple
    seq(coeff(series(mul(1/(1-x^k/(1+x)^k),k=1..n),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    nmax = 34; CoefficientList[Series[Product[1/(1 - x^k/(1 + x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 34; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k] x^k/(k (1 + x)^k), {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1, m+2, 1/(1 - x^k/(1 + x)^k))) \\ G. C. Greubel, Oct 29 2018
    

Formula

G.f.: exp(Sum_{k>=1} x^k/(k*((1 + x)^k - x^k))).
G.f.: exp(Sum_{k>=1} sigma(k)*x^k/(k*(1 + x)^k)).

A320589 Expansion of (1/(1 + x)) * Sum_{k>=1} k*x^k/(x^k + (1 + x)^k).

Original entry on oeis.org

1, -1, 4, -13, 36, -88, 197, -421, 895, -1946, 4346, -9832, 22140, -49043, 106389, -226213, 473366, -980413, 2022418, -4179198, 8687753, -18201140, 38398455, -81343408, 172383461, -364158198, 764854519, -1595107695, 3302884966, -6796646603, 13921482698, -28437025029, 58034908034
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2018

Keywords

Comments

Inverse binomial transform of A000593.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1/(1 + x))*(&+[k*x^k/(x^k + (1 + x)^k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 29 2018
  • Maple
    seq(coeff(series((1/(1+x))*add(k*x^k/(x^k+(1+x)^k),k=1..n),x,n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    nmax = 33; Rest[CoefficientList[Series[1/(1 + x) Sum[k x^k/(x^k + (1 + x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 33; Rest[CoefficientList[Series[(EllipticTheta[3, 0, x/(1 + x)]^4 + EllipticTheta[2, 0, x/(1 + x)]^4 - 1)/(24 (1 + x)), {x, 0, nmax}], x]]
    Table[Sum[(-1)^(n - k) Binomial[n, k] Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}], {k, n}], {n, 33}]
  • PARI
    m=50; x='x+O('x^m); Vec((1/(1 + x))*sum(k=1, m+2, k*x^k/(x^k + (1 + x)^k))) \\ G. C. Greubel, Oct 29 2018
    

Formula

G.f.: (theta_3(x/(1 + x))^4 + theta_2(x/(1 + x))^4 - 1)/(24*(1 + x)), where theta_() is the Jacobi theta function.
L.g.f.: Sum_{k>=1} A000593(k)*x^k/(k*(1 + x)^k) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n,k)*A000593(k).
Conjecture: a(n) ~ -(-1)^n * c * 2^n * n, where c = Pi^2/48 = 0.205616758356... - Vaclav Kotesovec, Jun 26 2019

A380412 First term of the n-th differences of the strict partition numbers. Inverse zero-based binomial transform of A000009.

Original entry on oeis.org

1, 0, 0, 1, -3, 7, -14, 25, -41, 64, -100, 165, -294, 550, -1023, 1795, -2823, 3658, -2882, -2873, 20435, -62185, 148863, -314008, 613957, -1155794, 2175823, -4244026, 8753538, -19006490, 42471787, -95234575, 210395407, -453413866, 949508390, -1931939460
Offset: 0

Views

Author

Gus Wiseman, Feb 03 2025

Keywords

Comments

Up to sign, same as A293467.

Crossrefs

The version for non-strict partitions is A281425, row n=0 of A175804.
Column n=0 of A378622.
A000009 counts strict integer partitions, differences A087897, A378972.
A266232 gives zero-based binomial transform of A000009, differences A129519.

Programs

  • Mathematica
    nn=10;Table[First[Differences[PartitionsQ/@Range[0,nn],n]],{n,0,nn}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) binomial(n,k) A000041(k).

A307548 Expansion of Product_{k>=1} (1 - (x/(1+x))^k).

Original entry on oeis.org

1, -1, 0, 1, -2, 4, -9, 21, -48, 105, -218, 429, -803, 1442, -2521, 4380, -7734, 14091, -26468, 50405, -94980, 172824, -296704, 467589, -644459, 678109, -177123, -1752141, 7003180, -19432494, 46778567, -104623822, 224830880, -473859273, 992825436, -2084921584
Offset: 0

Views

Author

Seiichi Manyama, Apr 14 2019

Keywords

Crossrefs

Convolution inverse of A320590.

Programs

  • Mathematica
    m = 35; CoefficientList[Series[Product[1 - (x/(1+x))^k, {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-(x/(1+x))^k))

Formula

O.g.f.: Sum_{n >= 0} (-1)^n * x^(n*(n+1)/2)/Product_{k = 1..n} ((1 + x)^k - x^k). Cf. A320591. - Peter Bala, Dec 22 2020
Showing 1-6 of 6 results.