cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A095195 T(n,0) = prime(n), T(n,k) = T(n,k-1)-T(n-1,k-1), 0<=k

Original entry on oeis.org

2, 3, 1, 5, 2, 1, 7, 2, 0, -1, 11, 4, 2, 2, 3, 13, 2, -2, -4, -6, -9, 17, 4, 2, 4, 8, 14, 23, 19, 2, -2, -4, -8, -16, -30, -53, 23, 4, 2, 4, 8, 16, 32, 62, 115, 29, 6, 2, 0, -4, -12, -28, -60, -122, -237, 31, 2, -4, -6, -6, -2, 10, 38, 98, 220, 457, 37, 6, 4, 8, 14, 20, 22, 12
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2004

Keywords

Comments

T(n,0)=A000040(n); T(n,1)=A001223(n-1) for n>1; T(n,2)=A036263(n-2) for n>2; T(n,n-1)=A007442(n) for n>1.
Row k of the array (not the triangle) is the k-th differences of the prime numbers. - Gus Wiseman, Jan 11 2025

Examples

			Triangle begins:
   2;
   3,  1;
   5,  2,  1;
   7,  2,  0, -1;
  11,  4,  2,  2,  3;
  13,  2, -2, -4, -6, -9;
Alternative: array form read by antidiagonals:
     2,   3,   5,   7,  11,  13,  17,  19,  23,  29,  31,...
     1,   2,   2,   4,   2,   4,   2,   4,   6,   2,   6,...
     1,   0,   2,  -2,   2,  -2,   2,   2,  -4,   4,  -2,...
    -1,   2,  -4,   4,  -4,   4,   0,  -6,   8,  -6,   0,...
     3,  -6,   8,  -8,   8,  -4,  -6,  14, -14,   6,   4,...
    -9,  14, -16,  16, -12,  -2,  20, -28,  20,  -2,  -8,...
    23, -30,  32, -28,  10,  22, -48,  48, -22,  -6,  10,..,
   -53,  62, -60,  38,  12, -70,  96, -70,  16,  16, -12,...
   115,-122,  98, -26, -82, 166,-166,  86,   0, -28,  28,...
  -237, 220,-124, -56, 248,-332, 252, -86, -28,  56, -98,...
   457,-344,  68, 304,-580, 584,-338,  58,  84,-154, 308,...
		

Crossrefs

Cf. A140119 (row sums).
Below, the inclusive primes (A008578) are 1 followed by A000040. See also A075526.
Rows of the array (columns of the triangle) begin: A000040, A001223, A036263.
Column n = 1 of the array is A007442, inclusive A030016.
The version for partition numbers is A175804, see A053445, A281425, A320590.
First position of 0 is A376678, inclusive A376855.
Absolute antidiagonal-sums are A376681, inclusive A376684.
The inclusive version is A376682.
For composite instead of prime we have A377033, see A377034-A377037.
For squarefree instead of prime we have A377038, nonsquarefree A377046.
Column n = 2 of the array is A379542.

Programs

  • Haskell
    a095195 n k = a095195_tabl !! (n-1) !! (k-1)
    a095195_row n = a095195_tabl !! (n-1)
    a095195_tabl = f a000040_list [] where
       f (p:ps) xs = ys : f ps ys where ys = scanl (-) p xs
    -- Reinhard Zumkeller, Oct 10 2013
  • Maple
    A095195A := proc(n,k) # array, k>=0, n>=0
        option remember;
        if n =0 then
            ithprime(k+1) ;
        else
            procname(n-1,k+1)-procname(n-1,k) ;
        end if;
    end proc:
    A095195 := proc(n,k) # triangle, 0<=k=1
            A095195A(k,n-k-1) ;
    end proc: # R. J. Mathar, Sep 19 2013
  • Mathematica
    T[n_, 0] := Prime[n]; T[n_, k_] /; 0 <= k < n := T[n, k] = T[n, k-1] - T[n-1, k-1]; Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Feb 01 2017 *)
    nn=6;
    t=Table[Differences[Prime[Range[nn]],k],{k,0,nn}];
    Table[t[[j,i-j+1]],{i,nn},{j,i}] (* Gus Wiseman, Jan 11 2025 *)

A175804 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the n-th term of the k-th differences of partition numbers A000041.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, -1, 0, 1, 3, 2, 1, 1, 2, 5, -4, -2, -1, 0, 2, 7, 9, 5, 3, 2, 2, 4, 11, -21, -12, -7, -4, -2, 0, 4, 15, 49, 28, 16, 9, 5, 3, 3, 7, 22, -112, -63, -35, -19, -10, -5, -2, 1, 8, 30, 249, 137, 74, 39, 20, 10, 5, 3, 4, 12, 42, -539, -290, -153, -79, -40, -20, -10, -5, -2, 2, 14, 56
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2010

Keywords

Comments

Odlyzko showed that the k-th differences of A000041(n) alternate in sign with increasing n up to a certain index n_0(k) and then stay positive.
Are there any zeros after the first four, which all lie in columns k = 1, 2? - Gus Wiseman, Dec 15 2024

Examples

			Square array A(n,k) begins:
   1,  0,  1, -1,  2,  -4,   9,  ...
   1,  1,  0,  1, -2,   5, -12,  ...
   2,  1,  1, -1,  3,  -7,  16,  ...
   3,  2,  0,  2, -4,   9, -19,  ...
   5,  2,  2, -2,  5, -10,  20,  ...
   7,  4,  0,  3, -5,  10, -20,  ...
  11,  4,  3, -2,  5, -10,  22,  ...
		

Crossrefs

Columns k=0-5 give: A000041, A002865, A053445, A072380, A081094, A081095.
Main diagonal gives A379378.
For primes we have A095195 or A376682.
Row n = 0 is A281425.
Row n = 1 is A320590 except first term.
For composites we have A377033.
For squarefree numbers we have A377038.
For nonsquarefree numbers we have A377046.
For prime powers we have A377051.
Antidiagonal sums are A377056, absolute value version A378621.
The version for strict partitions is A378622, first column A293467.
A000009 counts strict integer partitions, differences A087897, A378972.

Programs

  • Maple
    A41:= combinat[numbpart]:
    DD:= proc(p) proc(n) option remember; p(n+1) -p(n) end end:
    A:= (n,k)-> (DD@@k)(A41)(n):
    seq(seq(A(n, d-n), n=0..d), d=0..11);
  • Mathematica
    max = 11; a41 = Array[PartitionsP, max+1, 0]; a[n_, k_] := Differences[a41, k][[n+1]]; Table[a[n, k-n], {k, 0, max}, {n, 0, k}] // Flatten (* Jean-François Alcover, Aug 29 2014 *)
    nn=5;Table[Table[Sum[(-1)^(k-i)*Binomial[k,i]*PartitionsP[n+i],{i,0,k}],{k,0,nn}],{n,0,nn}] (* Gus Wiseman, Dec 15 2024 *)

Formula

A(n,k) = (Delta^(k) A000041)(n).
A(n,k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k,i) * A000041(n+i). In words, row x is the inverse zero-based binomial transform of A000041 shifted left x times. - Gus Wiseman, Dec 15 2024

A281425 a(n) = [q^n] (1 - q)^n / Product_{j=1..n} (1 - q^j).

Original entry on oeis.org

1, 0, 1, -1, 2, -4, 9, -21, 49, -112, 249, -539, 1143, -2396, 5013, -10550, 22420, -48086, 103703, -223806, 481388, -1029507, 2187944, -4625058, 9742223, -20490753, 43111808, -90840465, 191773014, -405523635, 858378825, -1817304609, 3845492204, -8129023694, 17162802918, -36191083386
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 05 2017

Keywords

Comments

a(n) is n-th term of the Euler transform of -n + 1, 1, 1, 1, ...
Inverse zero-based binomial transform of A000041. The version for strict partitions is A380412, or A293467 up to sign. - Gus Wiseman, Feb 06 2025

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0,
          combinat[numbpart](n), b(n, k-1)-b(n-1, k-1))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 21 2024
  • Mathematica
    Table[SeriesCoefficient[(1 - q)^n / Product[(1 - q^j), {j, 1, n}], {q, 0, n}], {n, 0, 35}]
    Table[SeriesCoefficient[(1 - q)^n QPochhammer[q^(1 + n), q]/QPochhammer[q, q], {q, 0, n}], {n, 0, 35}]
    Table[SeriesCoefficient[1/QFactorial[n, q], {q, 0, n}], {n, 0, 35}]
    Table[Differences[PartitionsP[Range[0, n]], n], {n, 0, 35}] // Flatten
    Table[Sum[(-1)^j*Binomial[n, j]*PartitionsP[n-j], {j, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 06 2017 *)

Formula

a(n) = [q^n] 1/((1 + q)*(1 + q + q^2)*...*(1 + q + ... + q^(n-1))).
a(n) = Sum_{j=0..n} (-1)^j * binomial(n, j) * A000041(n-j). - Vaclav Kotesovec, Oct 06 2017
a(n) ~ (-1)^n * 2^(n - 3/2) * exp(Pi*sqrt(n/12) + Pi^2/96) / (sqrt(3)*n). - Vaclav Kotesovec, May 07 2018

A218481 Binomial transform of the partition numbers (A000041).

Original entry on oeis.org

1, 2, 5, 13, 34, 88, 225, 569, 1425, 3538, 8717, 21331, 51879, 125474, 301929, 723144, 1724532, 4096210, 9693455, 22859524, 53733252, 125919189, 294232580, 685661202, 1593719407, 3695348909, 8548564856, 19732115915, 45450793102, 104481137953, 239718272765
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2012

Keywords

Comments

Partial sums of A218482.
From Vaclav Kotesovec, Nov 02 2023: (Start)
Let 0 < p < 1, r > 0, v > 0, f(n) = v*exp(r*n^p)/n^b, then
Sum_{k=0..n} binomial(n,k) * f(k) ~ f(n/2) * 2^n * exp(g(n)), where
g(n) = p^2 * r^2 * n^p / (2^(1+2*p)*n^(1-p) + p*r*(1-p)*2^(1+p)).
Special cases:
p < 1/2, g(n) = 0
p = 1/2, g(n) = r^2/16
p = 2/3, g(n) = r^2 * n^(1/3) / (9 * 2^(1/3)) - r^3/81
p = 3/4, g(n) = 9*r^2*sqrt(n)/(64*sqrt(2)) - 27*r^3*n^(1/4)/(2048*2^(1/4)) + 81*r^4/65536
p = 3/5, g(n) = 9*r^2*n^(1/5)/(100*2^(1/5))
p = 4/5, g(n) = 2^(7/5)*r^2*n^(3/5)/25 - 4*2^(3/5)*r^3*n^(2/5)/625 + 8*2^(4/5)*r^4*n^(1/5)/15625 - 32*r^5/390625
(End)

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 13*x^3 + 34*x^4 + 88*x^5 + 225*x^6 + 569*x^7 +...
The g.f. equals the product:
A(x) = 1/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
and also equals the series:
A(x) = 1/(1-x) * (1  +  x*(1-x)/((1-x)-x)^2  +  x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2  +  x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2  +  x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...).
The terms begin:
a(0) = 1*1,
a(1) = 1*1 + 1*1 = 2;
a(2) = 1*1 + 2*1 + 1*2 = 5;
a(3) = 1*1 + 3*1 + 3*2 + 1*3 = 13;
a(4) = 1*1 + 4*1 + 6*2 + 4*3 + 1*5 = 34; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*PartitionsP[k],{k,0,n}],{n,0,30}] (* Vaclav Kotesovec, Jun 25 2015 *)
    nmax = 30; CoefficientList[Series[Sum[PartitionsP[k] * x^k / (1-x)^(k+1), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2022 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*numbpart(k))}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*prod(k=1,n,(1-x)^k/((1-x)^k-X^k)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*sum(m=0,n,x^m*(1-x)^(m*(m-1)/2)/prod(k=1,m,((1-x)^k - X^k))),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*sum(m=0,n,x^(m^2)*(1-X)^m/prod(k=1,m,((1-x)^k - x^k)^2)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*exp(sum(m=1,n+1,x^m/((1-x)^m-X^m)/m)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*exp(sum(m=1,n+1,sigma(m)*x^m/(1-X)^m/m)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(1/(1-X)*prod(k=1,n,(1 + x^k/(1-X)^k)^valuation(2*k,2)),n)}

Formula

G.f.: 1/(1-x)*Product_{n>=1} (1-x)^n / ((1-x)^n - x^n).
G.f.: 1/(1-x)*Sum_{n>=0} x^n * (1-x)^(n*(n-1)/2) / Product_{k=1..n} ((1-x)^k - x^k).
G.f.: 1/(1-x)*Sum_{n>=0} x^(n^2) * (1-x)^n / Product_{k=1..n} ((1-x)^k - x^k)^2.
G.f.: 1/(1-x)*exp( Sum_{n>=1} x^n/((1-x)^n - x^n) / n ).
G.f.: 1/(1-x)*exp( Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n ), where sigma(n) is the sum of divisors of n (A000203).
G.f.: 1/(1-x)*Product_{n>=1} (1 + x^n/(1-x)^n)^A001511(n), where 2^A001511(n) is the highest power of 2 that divides 2*n.
Logarithmic derivative yields A222115.
a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-1) / (n*sqrt(3)). - Vaclav Kotesovec, Jun 25 2015

A266232 Binomial transform of the number of partitions into distinct parts (A000009).

Original entry on oeis.org

1, 2, 4, 9, 21, 49, 114, 265, 615, 1422, 3272, 7493, 17090, 38850, 88065, 199097, 448953, 1009788, 2265642, 5071611, 11328395, 25254093, 56195143, 124829822, 276839061, 612991848, 1355268779, 2992016128, 6596222234, 14522634554, 31933047707, 70130243427
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 25 2015

Keywords

Comments

Let 0 < p < 1, r > 0, v > 0, f(n) = v*exp(r*n^p)/n^b, then
Sum_{k=0..n} binomial(n,k) * f(k) ~ f(n/2) * 2^n * exp(g(n)), where
g(n) = p^2 * r^2 * n^p / (2^(1+2*p)*n^(1-p) + p*r*(1-p)*2^(1+p)).
Special cases:
p < 1/2, g(n) = 0
p = 1/2, g(n) = r^2/16
p = 2/3, g(n) = r^2 * n^(1/3) / (9 * 2^(1/3)) - r^3/81
p = 3/4, g(n) = 9*r^2*sqrt(n)/(64*sqrt(2)) - 27*r^3*n^(1/4)/(2048*2^(1/4)) + 81*r^4/65536
p = 3/5, g(n) = 9*r^2*n^(1/5)/(100*2^(1/5))
p = 4/5, g(n) = 2^(7/5)*r^2*n^(3/5)/25 - 4*2^(3/5)*r^3*n^(2/5)/625 + 8*2^(4/5)*r^4*n^(1/5)/15625 - 32*r^5/390625

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}]
    nmax = 30; CoefficientList[Series[Sum[PartitionsQ[k] * x^k / (1-x)^(k+1), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2022 *)

Formula

a(n) ~ 2^(n-5/4) * exp(Pi*sqrt(n/6) + Pi^2/48) / (3^(1/4)*n^(3/4)).
G.f.: (1/(1 - x))*Product_{k>=1} (1 + x^k/(1 - x)^k). - Ilya Gutkovskiy, Aug 19 2018

A320590 Expansion of Product_{k>=1} 1/(1 - x^k/(1 + x)^k).

Original entry on oeis.org

1, 1, 1, 0, 1, -2, 5, -12, 28, -63, 137, -290, 604, -1253, 2617, -5537, 11870, -25666, 55617, -120103, 257582, -548119, 1158437, -2437114, 5117165, -10748530, 22621055, -47728657, 100932549, -213750621, 452855190, -958925784, 2028187595, -4283531490, 9033779224
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 16 2018

Keywords

Comments

The zero-based binomial transform of this sequence is A000070, and if we remove first terms it becomes A000041.

Crossrefs

Row n=1 of A175804 (except first term). Row n=0 is A281425.
The version for strict partitions is A320591, row n=1 of A378622, first column A293467.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1 - x^k/(1 + x)^k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 29 2018
  • Maple
    seq(coeff(series(mul(1/(1-x^k/(1+x)^k),k=1..n),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    nmax = 34; CoefficientList[Series[Product[1/(1 - x^k/(1 + x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 34; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k] x^k/(k (1 + x)^k), {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1, m+2, 1/(1 - x^k/(1 + x)^k))) \\ G. C. Greubel, Oct 29 2018
    

Formula

G.f.: exp(Sum_{k>=1} x^k/(k*((1 + x)^k - x^k))).
G.f.: exp(Sum_{k>=1} sigma(k)*x^k/(k*(1 + x)^k)).

A378622 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the strict partition numbers A000009.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 2, 0, -1, -2, -3, 3, 1, 1, 2, 4, 7, 4, 1, 0, -1, -3, -7, -14, 5, 1, 0, 0, 1, 4, 11, 25, 6, 1, 0, 0, 0, -1, -5, -16, -41, 8, 2, 1, 1, 1, 1, 2, 7, 23, 64, 10, 2, 0, -1, -2, -3, -4, -6, -13, -36, -100, 12, 2, 0, 0, 1, 3, 6, 10, 16, 29, 65, 165
Offset: 0

Views

Author

Gus Wiseman, Dec 13 2024

Keywords

Examples

			As a table (read by antidiagonals downward):
        n=0:  n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:
  ----------------------------------------------------------
  k=0:   1     1     1     2     2     3     4     5     6
  k=1:   0     0     1     0     1     1     1     1     2
  k=2:   0     1    -1     1     0     0     0     1     0
  k=3:   1    -2     2    -1     0     0     1    -1     0
  k=4:  -3     4    -3     1     0     1    -2     1     1
  k=5:   7    -7     4    -1     1    -3     3     0    -3
  k=6: -14    11    -5     2    -4     6    -3    -3     7
  k=7:  25   -16     7    -6    10    -9     0    10   -14
  k=8: -41    23   -13    16   -19     9    10   -24    24
  k=9:  64   -36    29   -35    28     1   -34    48   -34
As a triangle (read by rows):
   1
   1   0
   1   0   0
   2   1   1   1
   2   0  -1  -2  -3
   3   1   1   2   4   7
   4   1   0  -1  -3  -7 -14
   5   1   0   0   1   4  11  25
   6   1   0   0   0  -1  -5 -16 -41
   8   2   1   1   1   1   2   7  23  64
		

Crossrefs

Rows are: A000009 (k=0), A087897 (k=1, without first term), A378972 (k=2).
For primes we have A095195 or A376682.
For partitions we have A175804.
First column is A293467 (up to sign).
For composites we have A377033.
For squarefree numbers we have A377038.
For nonsquarefree numbers we have A377046.
For prime powers we have A377051.
Position of first zero in each row is A377285.
Triangle's row-sums are A378970, absolute A378971.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
    Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A378972 Second differences of the strict partition numbers A000009.

Original entry on oeis.org

0, 1, -1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 2, 0, 2, 2, 1, 2, 3, 2, 3, 4, 3, 4, 6, 4, 6, 8, 6, 9, 10, 9, 12, 14, 13, 16, 19, 18, 22, 26, 24, 30, 34, 34, 40, 45, 46, 53, 60, 62, 70, 79, 82, 93, 104, 108, 122, 136, 142, 160, 176, 186, 208, 228, 243, 268
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			The strict partition numbers begin (A000009):
  1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, ...
with differences (A087897 without first term):
  0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, ...
with differences (a(n)):
  0, 1, -1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 2, 0, 2, 2, 1, 2, ...
		

Crossrefs

For primes we have A036263.
The version for partitions is A053445.
For composites we have A073445.
For squarefree numbers we have A376590.
For nonsquarefree numbers we have A376593.
For powers of primes (inclusive) we have A376596.
For non powers of primes (inclusive) we have A376599.
Second row of A378622. See also:
- A293467 gives first column (up to sign).
- A377285 gives position of first zero in each row.
- A378970 gives row-sums.
- A378971 gives absolute value row-sums.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    Differences[Table[PartitionsQ[n],{n,0,100}],2]

A377056 Antidiagonal-sums of the array A175804(n,k) = n-th term of k-th differences of partition numbers (A000041).

Original entry on oeis.org

1, 1, 4, 3, 11, 2, 36, -27, 142, -207, 595, -1066, 2497, -4878, 10726, -22189, 48383, -103318, 224296, -480761, 1030299, -2186942, 4626313, -9740648, 20492711, -43109372, 90843475, -191769296, 405528200, -858373221, 1817311451, -3845483855, 8129033837
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2024

Keywords

Examples

			Antidiagonal i + j = 3 of A175804 is (3, 1, 0, -1), so a(3) = 3.
		

Crossrefs

For primes we have A140119 or A376683, unsigned A376681 or A376684.
These are the antidiagonal-sums of A175804.
First column of the same array is A281425.
For composites we have A377034, unsigned A377035.
For squarefree numbers we have A377039, unsigned A377040.
For nonsquarefree numbers we have A377049, unsigned A377048.
For prime powers we have A377052, unsigned A377053.
The unsigned version is A378621.
The version for strict partitions is A378970 (row-sums of A378622), unsigned A378971.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=20;
    t=Table[Differences[PartitionsP/@Range[0,2nn],k],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A377285 Position of first 0 in the n-th differences of the strict partition numbers A000009, or 0 if 0 does not appear.

Original entry on oeis.org

0, 1, 1, 5, 5, 8, 20, 7, 22
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2024

Keywords

Comments

Open problem: Do the 9th differences of the strict integer partition numbers contain a zero? If so, we must have a(9) > 10^5.
a(12) = 47. Conjecture: a(n) = 0 for n > 12. - Chai Wah Wu, Dec 15 2024

Examples

			The 7th differences of A000009 are: 25, -16, 7, -6, 10, -9, 0, 10, ... so a(7) = 7.
		

Crossrefs

For primes we have A376678.
For composites we have A377037.
For squarefree numbers we have A377042.
For nonsquarefree numbers we have A377050.
For prime-powers we have A377055.
Position of first zero in each row of A378622. See also:
- A175804 is the version for partitions.
- A293467 gives first column (up to sign).
- A378970 gives row-sums.
- A378971 gives row-sums of absolute value.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    Table[Position[Differences[PartitionsQ/@Range[0,100],k],0][[1,1]],{k,1,8}]
  • PARI
    a(n, nn=100) = my(q='q+O('q^nn), v=Vec(eta(q^2)/eta(q))); for (i=1, n, my(w=vector(#v-1, k, v[k+1]-v[k])); v = w;); my(vz=select(x->x==0, v, 1)); if (#vz, vz[1]); \\ Michel Marcus, Dec 15 2024
Showing 1-10 of 23 results. Next