A129526 Number of n-bead two-color bracelets with 00 prohibited.
2, 2, 3, 3, 5, 5, 8, 9, 14, 16, 26, 31, 49, 64, 99, 133, 209, 291, 455, 657, 1022, 1510, 2359, 3545, 5536, 8442, 13201, 20319, 31836, 49353, 77436, 120711, 189674, 296854, 467160, 733363, 1155647, 1818594, 2869378, 4524081, 7146483
Offset: 2
Keywords
Examples
a(9) = 9 because of 111111111, 011111111, 010111111, 011011111, 011101111, 010101111, 010110111, 011011011, 010101011.
Links
- Ali Reza Ashrafi, Jernej Azarija, Khadijeh Fathalikhani, Sandi Klavžar, Marko Petkovšek, Vertex and edge orbits of Fibonacci and Lucas cubes, arXiv:1407.4962 [math.CO], 2014. See Table 4.
- A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar, et al., Orbits of Fibonacci and Lucas cubes, dihedral transformations, and asymmetric strings, 2014.
- M. Assis, J. L. Jacobsen, I. Jensen, J.-M. Maillard and B. M. McCoy, Hard hexagon partition function for complex fugacity, arXiv preprint arXiv:1306.6389 [math-ph], 2013.
- M. Assis, J. L. Jacobsen, I. Jensen, J.-M. Maillard and B. M. McCoy, Integrability vs non-integrability: Hard hexagons and hard squares compared, arXiv preprint 1406.5566 [math-ph], 2014.
- C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, Z. Papić, Quantum scarred eigenstates in a Rydberg atom chain: entanglement, breakdown of thermalization, and stability to perturbations, arXiv:1806.10933 [cond-mat.quant-gas], 2018.
Crossrefs
Cf. A000358.
Programs
-
Mathematica
nn=48;Drop[Map[Total,Transpose[Map[PadRight[#,nn]&,Table[CoefficientList[Series[CycleIndex[DihedralGroup[n],s]/.Table[s[i]->x^i+x^(2i),{i,1,n}],{x,0,nn}],x],{n,0,nn}]]]],2] (* Geoffrey Critzer, Feb 01 2014 *) mx:=50;CoefficientList[Series[(Sum[(EulerPhi[n] Log[1- x^n (1+x^n)])/n,{n,1,mx}]+((1+x) (1+x^2))/(-1+x^2+x^4))/(-2),{x,0,mx}],x] (* Herbert Kociemba, Dec 04 2016 *)
Formula
G.f.: [Sum_{n>=1} phi(n)*log(1- x^n*(1+x^n))/n + ((1+x)*(1+x^2))/(-1+x^2+x^4)]/(-2). - Herbert Kociemba, Dec 04 2016
a(n) = [A000358(n)+Fib(floor(n/2)+2)]/2. - Petros Hadjicostas, Jan 04 2017
a(n) = [Fib(floor(n/2)+2)+(1/n) * sum_{d divides n} phi(n/d)*(Fib(d-1)+Fib(d+1))]/2. - Petros Hadjicostas, Jan 04 2017 (with help from Lingyun Zhang).
Extensions
a(10) corrected and added more terms (from a(14) inclusive) by Washington Bomfim, Aug 24 2008
Comments