A129626 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+281)^2 = y^2.
0, 76, 559, 843, 1239, 3976, 5620, 7920, 23859, 33439, 46843, 139740, 195576, 273700, 815143, 1140579, 1595919, 4751680, 6648460, 9302376, 27695499, 38750743, 54218899, 161421876, 225856560, 316011580, 940836319, 1316389179, 1841851143, 5483596600
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 76, 559, 843, 1239, 3976, 5620}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
-
PARI
{forstep(n=0, 1000000000, [3, 1], if(issquare(2*n^2+562*n+78961), print1(n, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6)+562 for n > 6; a(1)=0, a(2)=76, a(3)=559, a(4)=843, a(5)=1239, a(6)=3976.
G.f.: x*(76+483*x+284*x^2-60*x^3-161*x^4-60*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 281*A001652(k) for k >= 0.
Extensions
Edited by Klaus Brockhaus, Apr 12 2009
Comments