A129637 Number of n-step paths that can go {west, southeast, southwest, northwest} on a 240-degree wedge on the equilateral triangular lattice.
1, 3, 11, 41, 157, 607, 2367, 9277, 36505, 144059, 569779, 2257521, 8957109, 35579351, 141460391, 562871557, 2241129905, 8928207987, 35584894299, 141886838329, 565938926669
Offset: 0
Keywords
Examples
a(1) = 3 because only 3 out of the 4 steps are permissible from the origin; a(2) = 11 because the northwest and west steps are followed by 4 permissible steps each, but the southwest step is only followed by 3 permissible steps.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
Crossrefs
Cf. A129400.
Programs
-
Mathematica
a[0,0]=1; a[n_,k_]/;k<0 || k>n := 0; a[n_,k_]/;0<=k<=n := a[n,k] = 2a[n-1,k-1] + a[n-1,k] + a[n-1,k+1]; a[n_]:=Sum[a[n,k],{k,0,n}]; Table[a[n],{n,0,10}] (* David Callan, Jul 22 2008 *)
-
Maxima
a(n):=sum(binomial(n+1,k)*sum(2^(i+k-1)*binomial(k,i)*(-1)^(n-i)*binomial(n-i-1,k-i-1),i,0,n),k,0,n+1)/(n+1); /* Vladimir Kruchinin, Feb 28 2016 */
-
PARI
a(n) = {sum(k=0, n+1, binomial(n+1, k) * sum(i=0,n, 2^(i+k-1)*binomial(k,i)*(-1)^(n-i)*binomial(n-i-1,k-i-1)))/(n+1)} \\ Andrew Howroyd, Dec 22 2017
Formula
Recurrence: (-28-28*n)*a(n) + (-13-n)*a(1+n) + (21+6*n)*a(n+2) + (-4-n)*a(n+3), a(0) = 1, a(1) = 3, a(2) = 11.
G.f.: (1/4*i)*sqrt(-1+2*t+7*t^2)/((-1+4*t)*t)-(1/4)*(-1+5*t)/(t*(-1+4*t)), where i is the imaginary unit.
Differential equation: -(1+28*t^3-6*t+t^2)*t*((d/dt)f(t)) + (9*t-12*t^2-1-28*t^3)*f(t) + 1 - 3*t, f(0) = 1.
a(n) = Sum_{k=0..n+1}(binomial(n+1,k)*Sum_{i=0..n}(2^(i+k-1)*binomial(k,i)*(-1)^(n-i)*binomial(n-i-1,k-i-1)))/(n+1). - Vladimir Kruchinin, Feb 28 2016
a(n) ~ 2^(2*n-1). - Vaclav Kotesovec, Feb 28 2016
Comments