A129654 Number of different ways to represent n as general polygonal number P(m,r) = 1/2*r*((m-2)*r-(m-4)) = n>1, for m,r>1.
1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 4, 3, 2, 3, 2, 2, 4, 3, 2, 3, 3, 2, 3, 4, 2, 3, 2, 2, 3, 3, 3, 5, 2, 2, 3, 3, 2, 3, 2, 2, 5, 3, 2, 3, 3, 2, 4, 3, 2, 3, 4, 2, 3, 3, 2, 3, 2, 2, 3, 4, 3, 5, 2, 2, 3, 4, 2, 3, 2, 2, 4, 3, 2, 4, 2, 2, 5, 3, 2, 3, 3, 2, 3, 3, 2, 3, 4, 3, 3, 3, 3, 4, 2, 2, 3, 4, 2, 3, 2, 2, 5, 3
Offset: 2
Keywords
Examples
a(6) = 3 because 6 = P(2,6) = P(3,3) = P(6,2).
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..10000
- E. Deza and M. Deza, Figurate Numbers, World Scientific, 2012; see p. 45.
- Eric Weisstein's World of Mathematics, Polygonal Number
- Gus Wiseman, Sequences counting and ranking integer partitions by the differences of their successive parts.
Crossrefs
Programs
-
Maple
A129654 := proc(n) local resul, dvs, i, r, m ; dvs := numtheory[divisors](2*n) ; resul := 0 ; for i from 1 to nops(dvs) do r := op(i, dvs) ; if r > 1 then m := (2*n/r-4+2*r)/(r-1) ; if is(m, integer) then resul := resul+1 ; fi ; fi ; od ; RETURN(resul) ; end: # R. J. Mathar, May 14 2007
-
Mathematica
a[n_] := (dvs = Divisors[2*n]; resul = 0; For[i = 1, i <= Length[dvs], i++, r = dvs[[i]]; If[r > 1, m = (2*n/r-4+2*r)/(r-1); If[IntegerQ[m], resul = resul+1 ] ] ]; resul); Table[a[n], {n, 2, 106}] (* Jean-François Alcover, Sep 13 2012, translated from R. J. Mathar's Maple program *) Table[Length[Intersection[Divisors[2 n - 2] + 1, Divisors[2 n]]], {n, 2, 106}] (* Jonathan Sondow, May 09 2014 *) atpms[n_]:=Select[Join@@Table[i*Range[k,1,-1],{k,n},{i,0,n}],Total[#+1]==n&]; Table[Length[atpms[n]],{n,100}] (* Gus Wiseman, May 03 2019 *)
-
PARI
a(n) = sumdiv(2*n, d, (d>1) && (2*n/d + 2*d - 4) % (d-1) == 0); \\ Daniel Suteu, Dec 22 2018
Formula
a(n) = A177025(n) + 1.
G.f.: x * Sum_{k>=1} x^k / (1 - x^(k*(k + 1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 09 2020
Comments