cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129682 Number of ways tiling a 2 X n rectangle with 2 X 1 (domino) and 3 X 1 (tromino) tiles.

Original entry on oeis.org

1, 1, 2, 4, 7, 15, 30, 60, 123, 249, 506, 1030, 2093, 4257, 8658, 17606, 35807, 72821, 148096, 301188, 612531, 1245717, 2533444, 5152318, 10478383, 21310119, 43338854, 88139182, 179250591, 364545863, 741384936, 1507770834, 3066386677, 6236177973, 12682652180
Offset: 0

Views

Author

Terry Petrard (temper3243(AT)gmail.com), May 04 2008

Keywords

Comments

Computed using a program with backtracking.

Crossrefs

Column k=2 of A219866. - Alois P. Heinz, Nov 30 2012

Programs

  • Mathematica
    LinearRecurrence[{2,0,1,-2,1,-1},{1,2,4,7,15,30},40] (* Harvey P. Dale, Sep 02 2012 *)
  • PARI
    my(a=vector(50)); a[1]=1; a[2]=1;a[3]=2; a[4]=4; a[5]=7; a[6]=15; for(n=7, 50, a[n]=2*a[n-1]+a[n-3]-2*a[n-4]+a[n-5]-a[n-6]); a \\ Robert Gerbicz, May 09 2008

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) + 2*r(n-3), where r(n) = r(n-1) + r(n-2) + a(n-2);
f(n) = f(n-1) + p(n) + q(n), where p(n) is the number of ways after filling 2 X n with a horizontal 2 X 1 domino and q(n) is the number of ways after filling 2 X n with a horizontal 3 X 1 domino.
r(n) is a 2 X n rectangle with 1 square removed from top left
p(n) is a 2 X n rectangle with 2 square removed from top left
q(n) is a 2 X n rectangle with 3 square removed from top left
p(n) = f(n-2) + r(n-2) (tiling with 2x1 gives f(n-2) and 3x1 gives r(n-2))
q(n) = f(n-3) + r(n-2) (tiling with 3x1 gives f(n-3) and 2x1 gives r(n-2))
r(n) = r(n-1) + p(n-2) (tiling with 2x1 gives r(n-1), tiling with a 3x1 gives p(n-2))
a(n)=2*a(n-1)+a(n-3)-2*a(n-4)+a(n-5)-a(n-6) - Robert Gerbicz, May 09 2008
G.f.: (1 - x - x^3)/((1-x)*(1-x-x^2-2*x^3-x^5)). - R. J. Mathar, Oct 30 2008

Extensions

More terms from Robert Gerbicz, May 09 2008